模块和包
一 模块1 什么是模块?? ?常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。 ? ?但其实import加载的模块分为四个通用类别: 1 使用python编写的代码(.py文件) 2 已被编译为共享库或DLL的C或C++扩展 3 包好一组模块的包 4 使用C编写并链接到python解释器的内置模块 2 为何要使用模块?? ? 如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。 ? ? 随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用, 3.如何使用模块?3.1 import示例文件:自定义模块my_module.py,文件名my_module.py,模块名my_module #my_module.py print(‘from the my_module.py‘) money=1000 def read1(): print(‘my_module->read1->money‘,money) def read2(): print(‘my_module->read2 calling read1‘) read1() def change(): global money money=0 3.1.1模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下? #demo.py import my_module #只在第一次导入时才执行my_module.py内代码,此处的显式效果是只打印一次‘from the my_module.py‘,当然其他的顶级代码也都被执行了,只不过没有显示效果. import my_module import my_module import my_module ‘‘‘ 执行结果: from the my_module.py ‘‘‘ 我们可以从sys.modules中找到当前已经加载的模块,sys.modules是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。 3.1.2?每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突 ? #测试一:money与my_module.money不冲突 #demo.py import my_module money=10 print(my_module.money) ‘‘‘ 执行结果: from the my_module.py 1000 ‘‘‘ #测试二:read1与my_module.read1不冲突 #demo.py import my_module def read1(): print(‘========‘) my_module.read1() ‘‘‘ 执行结果: from the my_module.py my_module->read1->money 1000 ‘‘‘ #测试三:执行my_module.change()操作的全局变量money仍然是my_module中的 #demo.py import my_module money=1 my_module.change() print(money) ‘‘‘ 执行结果: from the my_module.py 1 ‘‘‘ 3.1.3总结:首次导入模块my_module时会做三件事: 1.为源文件(my_module模块)创建新的名称空间,在my_module中定义的函数和方法若是使用到了global时访问的就是这个名称空间。 2.在新创建的命名空间中执行模块中包含的代码,见初始导入import?my_module 1 提示:导入模块时到底执行了什么? 2 3 In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function name in the module’s global symbol table. 4 事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放入模块全局名称空间表,用globals()可以查看 3.创建名字my_module来引用该命名空间 1 这个名字和变量名没什么区别,都是‘第一类的’,且使用my_module.名字的方式可以访问my_module.py文件中定义的名字,my_module.名字与test.py中的名字来自两个完全不同的地方。 ? ?3.1.4为模块名起别名,相当于m1=1;m2=m1? 1 import my_module as sm 2 print(sm.money) 3.1.5在一行导入多个模块 1 import sys,os,re ? 3.2?from ... import...3.2.1对比import my_module,会将源文件的名称空间‘my_module‘带到当前名称空间中,使用时必须是my_module.名字的方式 而from 语句相当于import,也会创建新的名称空间,但是将my_module中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以了、 1 from my_module import read1,read2 这样在当前位置直接使用read1和read2就好了,执行时,仍然以my_module.py文件全局名称空间 #测试一:导入的函数read1,执行时仍然回到my_module.py中寻找全局变量money #demo.py from my_module import read1 money=1000 read1() ‘‘‘ 执行结果: from the my_module.py spam->read1->money 1000 ‘‘‘ #测试二:导入的函数read2,执行时需要调用read1(),仍然回到my_module.py中找read1() #demo.py from my_module import read2 def read1(): print(‘==========‘) read2() ‘‘‘ 执行结果: from the my_module.py my_module->read2 calling read1 my_module->read1->money 1000 ‘‘‘ 如果当前有重名read1或者read2,那么会有覆盖效果。 #测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 #demo.py from my_module import read1 def read1(): print(‘==========‘) read1() ‘‘‘ 执行结果: from the my_module.py ========== ‘‘‘ 需要特别强调的一点是:python中的变量赋值不是一种存储操作,而只是一种绑定关系,如下: from my_module import money,read1 money=100 #将当前位置的名字money绑定到了100 print(money) #打印当前的名字 read1() #读取my_module.py中的名字money,仍然为1000 ‘‘‘ from the my_module.py 100 my_module->read1->money 1000 ‘‘‘ 3.2.2也支持as 1 from my_module import read1 as read ? 3.2.3也支持导入多行 1 from my_module import (read1,2 read2,3 money) ? 3.2.4from my_module?import * 把my_module中所有的不是以下划线(_)开头的名字都导入到当前位置,大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。 from my_module import * #将模块my_module中所有的名字都导入到当前名称空间 print(money) print(read1) print(read2) print(change) ‘‘‘ 执行结果: from the my_module.py 1000 <function read1 at 0x1012e8158> <function read2 at 0x1012e81e0> <function change at 0x1012e8268> ‘‘‘ 在my_module.py中新增一行 __all__=[‘money‘,‘read1‘] #这样在另外一个文件中用from my_module import *就这能导入列表中规定的两个名字 ? *如果my_module.py中的名字前加_,即_money,则from my_module?import *,则_money不能被导入 3.2.5 模块的循环引用问题思考:假如有两个模块a,b。我可不可以在a模块中import b ,再在b模块中import a? 3.2.6 模块的加载与修改考虑到性能的原因,每个模块只被导入一次,放入字典sys.modules中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块, 有的同学可能会想到直接从sys.modules中删除一个模块不就可以卸载了吗,注意了,你删了sys.modules中的模块对象仍然可能被其他程序的组件所引用,因而不会被清除。 特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。 如果只是你想交互测试的一个模块,使用 importlib.reload(),e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。 def func1(): print(‘func1‘) import time,importlib ********************* import aa time.sleep(20) # importlib.reload(aa) aa.func1() 在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。 打开importlib注释,重新测试 ? 3.3?把模块当做脚本执行?我们可以通过模块的全局变量__name__来查看模块名: 当做模块导入: 作用:用来控制.py文件在不同的应用场景下执行不同的逻辑 def fib(n): a,b = 0,1 while b < n: print(b,end=‘ ‘) a,b = b,a+b print() if __name__ == "__main__": print(__name__) num = input(‘num :‘) fib(int(num)) 3.4 模块搜索路径python解释器在启动时会自动加载一些模块,可以使用sys.modules查看 在第一次导入某个模块时(比如my_module),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用 如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找my_module.py文件。 所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块 sys.path的初始化的值来自于: The directory containing the input script (or the current directory when no file is specified). 需要特别注意的是:我们自定义的模块名不应该与系统内置模块重名。虽然每次都说,但是仍然会有人不停的犯错。? 在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。 1 >>> import sys 2 >>> sys.path.append(‘/a/b/c/d‘) 3 >>> sys.path.insert(0,‘/x/y/z‘) #排在前的目录,优先被搜索 注意:搜索时按照sys.path中从左到右的顺序查找,位于前的优先被查找,sys.path中还可能包含.zip归档文件和.egg文件,python会把.zip归档文件当成一个目录去处理。 #首先制作归档文件:zip module.zip foo.py bar.py import sys sys.path.append(‘module.zip‘) import foo,bar #也可以使用zip中目录结构的具体位置 sys.path.append(‘module.zip/lib/python‘) #windows下的路径不加r开头,会语法错误 sys.path.insert(0,r‘C:UsersAdministratorPycharmProjectsa‘) 至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了额外元数据(如版本号,依赖项等)的.zip文件。 需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。 官方解释 #官网链接:https://docs.python.org/3/tutorial/modules.html#the-module-search-path 搜索路径: 当一个命名为my_module的模块被导入时 解释器首先会从内建模块中寻找该名字 找不到,则去sys.path中找该名字 sys.path从以下位置初始化 执行文件所在的当前目录 PTYHONPATH(包含一系列目录名,与shell变量PATH语法一样) 依赖安装时默认指定的 注意:在支持软连接的文件系统中,执行脚本所在的目录是在软连接之后被计算的,换句话说,包含软连接的目录不会被添加到模块的搜索路径中 在初始化后,我们也可以在python程序中修改sys.path,执行文件所在的路径默认是sys.path的第一个目录,在所有标准库路径的前面。这意味着,当前目录是优先于标准库目录的,需要强调的是:我们自定义的模块名不要跟python标准库的模块名重复,除非你是故意的,*** 3.5?编译python文件为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,my_module.py模块会被缓存成__pycache__/my_module.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。 ? Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的。 ? python解释器在以下两种情况下不检测缓存 python -m my_module.py 2 如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下? 提示: 1.模块名区分大小写,foo.py与FOO.py代表的是两个模块 2.你可以使用-O或者-OO转换python命令来减少编译模块的大小 -O转换会帮你去掉assert语句 -OO转换会帮你去掉assert语句和__doc__文档字符串 由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要的情况下使用这些选项。 3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的 4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件 模块可以作为一个脚本(使用python -m compileall)编译Python源 python -m compileall /module_directory 递归着编译 如果使用python -O -m compileall /module_directory -l则只一层 命令行里使用compile()函数时,自动使用python -O -m compileall 详见:https://docs.python.org/3/library/compileall.html#module-compileall 补充:dir()函数内建函数dir是用来查找模块中定义的名字,返回一个有序字符串列表 import my_module dir(my_module) ? 如果没有参数,dir()列举出当前定义的名字
import builtins dir(builtins) 二 包包是一种通过使用‘.模块名’来组织python模块名称空间的方式。 1. 无论是import形式还是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提高警觉:这是关于包才有的导入语法 2. 包是目录级的(文件夹级),文件夹是用来组成py文件(包的本质就是一个包含__init__.py文件的目录) 3. import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字同样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件 强调: 1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下一定要有该文件,否则import 包报错 2. 创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包即模块
import os os.makedirs(‘glance/api‘) os.makedirs(‘glance/cmd‘) os.makedirs(‘glance/db‘) l = [] l.append(open(‘glance/__init__.py‘,‘w‘)) l.append(open(‘glance/api/__init__.py‘,‘w‘)) l.append(open(‘glance/api/policy.py‘,‘w‘)) l.append(open(‘glance/api/versions.py‘,‘w‘)) l.append(open(‘glance/cmd/__init__.py‘,‘w‘)) l.append(open(‘glance/cmd/manage.py‘,‘w‘)) l.append(open(‘glance/db/models.py‘,‘w‘)) map(lambda f:f.close(),l) glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py #文件内容 #policy.py def get(): print(‘from policy.py‘) #versions.py def create_resource(conf): print(‘from version.py: ‘,conf) #manage.py def main(): print(‘from manage.py‘) #models.py def register_models(engine): print(‘from models.py: ‘,engine) 2.1 注意事项
2.对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。 3.对比import item 和from item import name的应用场景: 2.2 import?我们在与包glance同级别的文件中测试 1 import glance.db.models 2 glance.db.models.register_models(‘mysql‘)?
?
2.3 from ... import ...需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法 我们在与包glance同级别的文件中测试? 1 from glance.db import models 2 models.register_models(‘mysql‘) 3 4 from glance.db.models import register_models 5 register_models(‘mysql‘)
?
2.4 __init__.py文件不管是哪种方式,只要是第一次导入包或者是包的任何其他部分,都会依次执行包下的__init__.py文件(我们可以在每个包的文件内都打印一行内容来验证一下),这个文件可以为空,但是也可以存放一些初始化包的代码。
?
2.5 ?from glance.api import *在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。 此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___: #在__init__.py中定义 x=10 def func(): print(‘from api.__init.py‘) __all__=[‘x‘,‘func‘,‘policy‘] ?此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。 glance/ ├── __init__.py ├── api │ ├── __init__.py __all__ = [‘policy‘,‘versions‘] │ ├── policy.py │ └── versions.py ├── cmd __all__ = [‘manage‘] │ ├── __init__.py │ └── manage.py └── db __all__ = [‘models‘] ├── __init__.py └── models.py from glance.api import * policy.get() 2.6 绝对导入和相对导入我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式: 绝对导入:以glance作为起始 相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内) 例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py 在glance/api/version.py #绝对导入 from glance.cmd import manage manage.main() #相对导入 from ..cmd import manage manage.main() 测试结果:注意一定要在于glance同级的文件中测试 1 from glance.api import versions? 注意:在使用pycharm时,有的情况会为你多做一些事情,这是软件相关的东西,会影响你对模块导入的理解,因而在测试时,一定要回到命令行去执行,模拟我们生产环境,你总不能拿着pycharm去上线代码吧!!! ? 特别需要注意的是:可以用import导入内置或者第三方模块(已经在sys.path中),但是要绝对避免使用import来导入自定义包的子模块(没有在sys.path中),应该使用from... import ...的绝对或者相对导入,且包的相对导入只能用from的形式。 比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做 1 #在version.py中 2 3 import policy 4 policy.get() ? 没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到 但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下 from glance.api import versions ‘‘‘ 执行结果: ImportError: No module named ‘policy‘ ‘‘‘ ‘‘‘ 分析: 此时我们导入versions在versions.py中执行 import policy需要找从sys.path也就是从当前目录找policy.py,这必然是找不到的 ‘‘‘ ?
?
2.7 单独导入包单独导入包名称时不会导入包中所有包含的所有子模块,如 #在与glance同级的test.py中 import glance glance.cmd.manage.main() ‘‘‘ 执行结果: AttributeError: module ‘glance‘ has no attribute ‘cmd‘ ‘‘‘ ? 解决方法: 1 #glance/__init__.py 2 from . import cmd 3 4 #glance/cmd/__init__.py 5 from . import manage 执行: 1 #在于glance同级的test.py中 2 import glance 3 glance.cmd.manage.main() 千万别问:__all__不能解决吗,__all__是用于控制from...import *? import glance之后直接调用模块中的方法glance/ ├── __init__.py from .api import * from .cmd import * from .db import * ├── api │ ├── __init__.py __all__ = [‘policy‘,‘versions‘] │ ├── policy.py │ └── versions.py ├── cmd __all__ = [‘manage‘] │ ├── __init__.py │ └── manage.py └── db __all__ = [‘models‘] ├── __init__.py └── models.py import glance policy.get() 软件开发规范#=============>bin目录:存放执行脚本 #start.py import sys,os BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) from core import core from conf import my_log_settings if __name__ == ‘__main__‘: my_log_settings.load_my_logging_cfg() core.run() #=============>conf目录:存放配置文件 #config.ini [DEFAULT] user_timeout = 1000 [egon] password = 123 money = 10000000 [alex] password = alex3714 money=10000000000 [yuanhao] password = ysb123 money=10 #settings.py import os config_path=r‘%s%s‘ %(os.path.dirname(os.path.abspath(__file__)),‘config.ini‘) user_timeout=10 user_db_path=r‘%s%s‘ %(os.path.dirname(os.path.dirname(os.path.abspath(__file__))),‘db‘) #my_log_settings.py """ logging配置 """ import os import logging.config # 定义三种日志输出格式 开始 standard_format = ‘[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]‘ ‘[%(levelname)s][%(message)s]‘ #其中name为getlogger指定的名字 simple_format = ‘[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s‘ id_simple_format = ‘[%(levelname)s][%(asctime)s] %(message)s‘ # 定义日志输出格式 结束 logfile_dir = r‘%slog‘ %os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # log文件的目录 logfile_name = ‘all2.log‘ # log文件名 # 如果不存在定义的日志目录就创建一个 if not os.path.isdir(logfile_dir): os.mkdir(logfile_dir) # log文件的全路径 logfile_path = os.path.join(logfile_dir,logfile_name) # log配置字典 LOGGING_DIC = { ‘version‘: 1,‘disable_existing_loggers‘: False,‘formatters‘: { ‘standard‘: { ‘format‘: standard_format },‘simple‘: { ‘format‘: simple_format },},‘filters‘: {},‘handlers‘: { #打印到终端的日志 ‘console‘: { ‘level‘: ‘DEBUG‘,‘class‘: ‘logging.StreamHandler‘,# 打印到屏幕 ‘formatter‘: ‘simple‘ },#打印到文件的日志,收集info及以上的日志 ‘default‘: { ‘level‘: ‘DEBUG‘,‘class‘: ‘logging.handlers.RotatingFileHandler‘,# 保存到文件 ‘formatter‘: ‘standard‘,‘filename‘: logfile_path,# 日志文件 ‘maxBytes‘: 1024*1024*5,# 日志大小 5M ‘backupCount‘: 5,‘encoding‘: ‘utf-8‘,# 日志文件的编码,再也不用担心中文log乱码了 },‘loggers‘: { #logging.getLogger(__name__)拿到的logger配置 ‘‘: { ‘handlers‘: [‘default‘,‘console‘],# 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 ‘level‘: ‘DEBUG‘,‘propagate‘: True,# 向上(更高level的logger)传递 },} def load_my_logging_cfg(): logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置 logger = logging.getLogger(__name__) # 生成一个log实例 logger.info(‘It works!‘) # 记录该文件的运行状态 if __name__ == ‘__main__‘: load_my_logging_cfg() #=============>core目录:存放核心逻辑 #core.py import logging import time from conf import settings from lib import read_ini config=read_ini.read(settings.config_path) logger=logging.getLogger(__name__) current_user={‘user‘:None,‘login_time‘:None,‘timeout‘:int(settings.user_timeout)} def auth(func): def wrapper(*args,**kwargs): if current_user[‘user‘]: interval=time.time()-current_user[‘login_time‘] if interval < current_user[‘timeout‘]: return func(*args,**kwargs) name = input(‘name>>: ‘) password = input(‘password>>: ‘) if config.has_section(name): if password == config.get(name,‘password‘): logger.info(‘登录成功‘) current_user[‘user‘]=name current_user[‘login_time‘]=time.time() return func(*args,**kwargs) else: logger.error(‘用户名不存在‘) return wrapper @auth def buy(): print(‘buy...‘) @auth def run(): print(‘‘‘ 购物 查看余额 转账 ‘‘‘) while True: choice = input(‘>>: ‘).strip() if not choice:continue if choice == ‘1‘: buy() if __name__ == ‘__main__‘: run() #=============>db目录:存放数据库文件 #alex_json #egon_json #=============>lib目录:存放自定义的模块与包 #read_ini.py import configparser def read(config_file): config=configparser.ConfigParser() config.read(config_file) return config #=============>log目录:存放日志 #all2.log [2017-07-29 00:31:40,272][MainThread:11692][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:31:41,789][MainThread:11692][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:31:46,394][MainThread:12348][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:31:47,629][MainThread:12348][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:31:57,912][MainThread:10528][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:32:03,340][MainThread:12744][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:32:05,065][MainThread:12916][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:32:08,181][MainThread:12916][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:32:13,638][MainThread:7220][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:32:23,005][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] [2017-07-29 00:32:40,941][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] [2017-07-29 00:32:47,222][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] [2017-07-29 00:32:51,949][MainThread:7220][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:33:00,213][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] [2017-07-29 00:33:50,118][MainThread:8500][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] [2017-07-29 00:33:55,845][MainThread:8500][task_id:core.core][core.py:20][INFO][登录成功] [2017-07-29 00:34:06,837][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:34:09,405][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在] [2017-07-29 00:34:10,645][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在] (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |