加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python常用代码

发布时间:2020-12-20 10:42:50 所属栏目:Python 来源:网络整理
导读:目录 常用代码片段及技巧 自动选择GPU和CPU 切换当前目录 打印模型参数 将tensor的列表转换为tensor 内存不够 debug tensor memory 常用代码片段及技巧 自动选择GPU和CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# model and

目录

  • 常用代码片段及技巧
    • 自动选择GPU和CPU
    • 切换当前目录
    • 打印模型参数
    • 将tensor的列表转换为tensor
    • 内存不够
    • debug tensor memory

常用代码片段及技巧

自动选择GPU和CPU

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model and tensor to device
vgg = models.vgg16().to(device)

切换当前目录

import os
try:
    os.chdir(os.path.join(os.getcwd(),'..'))
    print(os.getcwd())
except:
    pass

打印模型参数

from torchsummary import summary
# 1 means in_channels
summary(model,(1,28,28))

将tensor的列表转换为tensor

x = torch.stack(tensor_list)

内存不够

  • Smaller batch size
  • torch.cuda.empty_cache()every few minibatches

debug tensor memory

resource` module is a Unix specific package as seen in https://docs.python.org/2/library/resource.html which is why it worked for you in Ubuntu,but raised an error when trying to use it in Windows.

Here is what solved it for me.

  1. Downgrade to the Apache Spark 2.3.2 prebuild version
  2. Install (or downgrade) jdk to version 1.8.0
    • My installed jdk was 1.9.0,which doesn‘t seem to be compatiable with spark 2.3.2 or 2.4.0
  3. make sure that when you run java -version in cmd (command prompt),it show java version 8. If you are seeing version 9,you will need to change your system ENV PATH to ensure it points to java version 8.
  4. Check this link to get help on changing the PATH if you have multiple java version installed.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def debug_memory():
    import collections,gc,resource,torch
    print('maxrss = {}'.format(
        resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    tensors = collections.Counter((str(o.device),o.dtype,tuple(o.shape))
                                  for o in gc.get_objects()
                                  if torch.is_tensor(o))
    for line in sorted(tensors.items()):
        print('{}t{}'.format(*line))
        
        
 # example
import tensor
 x = torch.tensor(3,3)
 debug_memory()
 
 y = torch.tensor(3,3)
 debug_memory()
 
 z = [torch.randn(i).long() for i in range(10)]
 debug_memory()

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读