python – 从UnivariateSpline对象获取样条方程
发布时间:2020-12-20 10:34:08 所属栏目:Python 来源:网络整理
导读:我正在使用UnivariateSpline为我拥有的某些数据构建分段多项式.然后我想在其他程序中使用这些样条(在C或FORTRAN中),因此我想了解生成样条函数背后的等式. 这是我的代码: import numpy as npimport scipy as spfrom scipy.interpolate import UnivariateSpli
我正在使用UnivariateSpline为我拥有的某些数据构建分段多项式.然后我想在其他程序中使用这些样条(在C或FORTRAN中),因此我想了解生成样条函数背后的等式.
这是我的代码: import numpy as np import scipy as sp from scipy.interpolate import UnivariateSpline import matplotlib.pyplot as plt import bisect data = np.loadtxt('test_C12H26.dat') Tmid = 800.0 print "Tmid",Tmid nmid = bisect.bisect(data[:,0],Tmid) fig = plt.figure() plt.plot(data[:,data[:,7],ls='',marker='o',markevery=20) npts = len(data[:,0]) #print "npts",npts w = np.ones(npts) w[0] = 100 w[nmid] = 100 w[npts-1] = 100 spline1 = UnivariateSpline(data[:nmid,data[:nmid,s=1,w=w[:nmid]) coeffs = spline1.get_coeffs() print coeffs print spline1.get_knots() print spline1.get_residual() print coeffs[0] + coeffs[1] * (data[0,0] - data[0,0]) + coeffs[2] * (data[0,0])**2 + coeffs[3] * (data[0,0])**3, data[0,7] print coeffs[0] + coeffs[1] * (data[nmid,0]) + coeffs[2] * (data[nmid,0])**2 + coeffs[3] * (data[nmid, data[nmid,7] print Tmid,data[-1,0] spline2 = UnivariateSpline(data[nmid-1:,data[nmid-1:,w=w[nmid-1:]) print spline2.get_coeffs() print spline2.get_knots() print spline2.get_residual() plt.plot(data[:,spline1(data[:,0])) plt.plot(data[:,spline2(data[:,0])) plt.savefig('test.png') 这是由此产生的情节.我相信每个区间都有有效的样条线,但看起来我的样条方程不正确…我找不到任何关于scipy文档中应该是什么的引用.有人知道吗?谢谢 ! 解决方法
关于如何获取系数并手动生成样条曲线,scipy documentation没有任何说法.但是,有可能从现有的B样条文献中找出如何做到这一点.以下函数bspleval显示了如何构造B样条基函数(代码中的矩阵B),通过将系数与最高阶基函数相乘并求和,可以很容易地生成样条曲线:
def bspleval(x,knots,coeffs,order,debug=False): ''' Evaluate a B-spline at a set of points. Parameters ---------- x : list or ndarray The set of points at which to evaluate the spline. knots : list or ndarray The set of knots used to define the spline. coeffs : list of ndarray The set of spline coefficients. order : int The order of the spline. Returns ------- y : ndarray The value of the spline at each point in x. ''' k = order t = knots m = alen(t) npts = alen(x) B = zeros((m-1,k+1,npts)) if debug: print('k=%i,m=%i,npts=%i' % (k,m,npts)) print('t=',t) print('coeffs=',coeffs) ## Create the zero-order B-spline basis functions. for i in range(m-1): B[i,:] = float64(logical_and(x >= t[i],x < t[i+1])) if (k == 0): B[m-2,-1] = 1.0 ## Next iteratively define the higher-order basis functions,working from lower order to higher. for j in range(1,k+1): for i in range(m-j-1): if (t[i+j] - t[i] == 0.0): first_term = 0.0 else: first_term = ((x - t[i]) / (t[i+j] - t[i])) * B[i,j-1,:] if (t[i+j+1] - t[i+1] == 0.0): second_term = 0.0 else: second_term = ((t[i+j+1] - x) / (t[i+j+1] - t[i+1])) * B[i+1,:] B[i,j,:] = first_term + second_term B[m-j-2,-1] = 1.0 if debug: plt.figure() for i in range(m-1): plt.plot(x,B[i,k,:]) plt.title('B-spline basis functions') ## Evaluate the spline by multiplying the coefficients with the highest-order basis functions. y = zeros(npts) for i in range(m-k-1): y += coeffs[i] * B[i,:] if debug: plt.figure() plt.plot(x,y) plt.title('spline curve') plt.show() return(y) 为了举例说明如何将其与Scipy现有的单变量样条函数一起使用,以下是一个示例脚本.这将获取输入数据并使用Scipy的功能以及面向对象的样条拟合方法.从两者中的任何一个中获取系数和结点,并使用这些作为我们手动计算的例程bspleval的输入,我们重现它们所做的相同曲线.请注意,手动评估曲线与Scipy评估方法之间的差异非常小,几乎可以肯定是浮点噪声. x = array([-273.0,-176.4,-79.8,16.9,113.5,210.1,306.8,403.4,500.0]) y = array([2.25927498e-53,2.56028619e-03,8.64512988e-01,6.27456769e+00,1.73894734e+01,3.29052124e+01,5.14612316e+01,7.20531200e+01,9.40718450e+01]) x_nodes = array([-273.0,-263.5,-234.8,-187.1,-120.3,-34.4,70.6,194.6,337.8,500.0]) y_nodes = array([2.25927498e-53,3.83520726e-46,8.46685318e-11,6.10568083e-04,1.82380809e-01,2.66344008e+00,1.18164677e+01,3.01811501e+01,5.78812583e+01,9.40718450e+01]) ## Now get scipy's spline fit. k = 3 tck = splrep(x_nodes,y_nodes,k=k,s=0) knots = tck[0] coeffs = tck[1] print('knot points=',knots) print('coefficients=',coeffs) ## Now try scipy's object-oriented version. The result is exactly the same as "tck": the knots are the ## same and the coeffs are the same,they are just queried in a different way. uspline = UnivariateSpline(x_nodes,s=0) uspline_knots = uspline.get_knots() uspline_coeffs = uspline.get_coeffs() ## Here are scipy's native spline evaluation methods. Again,"ytck" and "y_uspline" are exactly equal. ytck = splev(x,tck) y_uspline = uspline(x) y_knots = uspline(knots) ## Now let's try our manually-calculated evaluation function. y_eval = bspleval(x,debug=False) plt.plot(x,ytck,label='tck') plt.plot(x,y_uspline,label='uspline') plt.plot(x,y_eval,label='manual') ## Next plot the knots and nodes. plt.plot(x_nodes,'ko',markersize=7,label='input nodes') ## nodes plt.plot(knots,y_knots,'mo',markersize=5,label='tck knots') ## knots plt.xlim((-300.0,530.0)) plt.legend(loc='best',prop={'size':14}) plt.figure() plt.title('difference') plt.plot(x,ytck-y_uspline,label='tck-uspl') plt.plot(x,ytck-y_eval,label='tck-manual') plt.legend(loc='best',prop={'size':14}) plt.show() (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |