加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

Python数据可视化正态分布简单分析及实现代码

发布时间:2020-12-17 07:48:05 所属栏目:Python 来源:网络整理
导读:Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。 正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度

Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。

正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为

N(μ,σ^2)

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。其概率密度函数为:

我们通常所说的标准正态分布是

的正态分布:

概率密度函数

代码实现:

 # Python实现正态分布
 # 绘制正态分布概率密度函数
 u = 0 # 均值μ
 u01 = -2
 sig = math.sqrt(0.2) # 标准差δ
 sig01 = math.sqrt(1)
 sig02 = math.sqrt(5)
 sig_u01 = math.sqrt(0.5)
 x = np.linspace(u - 3*sig,u + 3*sig,50)
 x_01 = np.linspace(u - 6 * sig,u + 6 * sig,50)
 x_02 = np.linspace(u - 10 * sig,u + 10 * sig,50)
 x_u01 = np.linspace(u - 10 * sig,u + 1 * sig,50)
 y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
 y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
 y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
 y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
 plt.plot(x,y_sig,"r-",linewidth=2)
 plt.plot(x_01,y_sig01,"g-",linewidth=2)
 plt.plot(x_02,y_sig02,"b-",linewidth=2)
 plt.plot(x_u01,y_sig_u01,"m-",linewidth=2)
 # plt.plot(x,y,'r-',x,'go',linewidth=2,markersize=8)
 plt.grid(True)
 plt.show()

总结

以上就是本文关于Python数据可视化正态分布简单分析及实现代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他Python算法相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读