详解K-means算法在Python中的实现
K-means算法简介 K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。 K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法。k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。 核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。 k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 k-means算法的基础是最小误差平方和准则,K-menas的优缺点: 优点: 原理简单 缺点: 需要指定聚类 数量K K-means的聚类过程 其聚类过程类似于梯度下降算法,建立代价函数并通过迭代使得代价函数值越来越小 适当选择c个类的初始中心; 该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。 K-means 实例展示 python中km的一些参数: sklearn.cluster.KMeans( n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,precompute_distances='auto',verbose=0,random_state=None,copy_x=True,n_jobs=1,algorithm='auto' ) n_clusters: 簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回最好的结果。 max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代) tol: 容忍度,即kmeans运行准则收敛的条件 precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的 verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值) random_state: 随机生成簇中心的状态条件。 copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。 n_jobs: 并行设置 algorithm: kmeans的实现算法,有:'auto',‘full',‘elkan',其中 ‘full'表示用EM方式实现 虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。 下面展示一个代码例子 from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np # 生成10*3的矩阵 data = np.random.rand(10,3) print data # 聚类为4类 estimator=KMeans(n_clusters=4) # fit_predict表示拟合+预测,也可以分开写 res=estimator.fit_predict(data) # 预测类别标签结果 lable_pred=estimator.labels_ # 各个类别的聚类中心值 centroids=estimator.cluster_centers_ # 聚类中心均值向量的总和 inertia=estimator.inertia_ print lable_pred print centroids print inertia 代码执行结果 [0 2 1 0 2 2 0 3 2 0] [[ 0.3028348 0.25183096 0.62493622] [ 0.88481287 0.70891813 0.79463764] [ 0.66821961 0.54817207 0.30197415] [ 0.11629904 0.85684903 0.7088385 ]] 0.570794546829 为了更直观的描述,这次在图上做一个展示,由于图像上绘制二维比较直观,所以数据调整到了二维,选取100个点绘制,聚类类别为3类 from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np import matplotlib.pyplot as plt data = np.random.rand(100,2) estimator=KMeans(n_clusters=3) res=estimator.fit_predict(data) lable_pred=estimator.labels_ centroids=estimator.cluster_centers_ inertia=estimator.inertia_ #print res print lable_pred print centroids print inertia for i in range(len(data)): if int(lable_pred[i])==0: plt.scatter(data[i][0],data[i][1],color='red') if int(lable_pred[i])==1: plt.scatter(data[i][0],color='black') if int(lable_pred[i])==2: plt.scatter(data[i][0],color='blue') plt.show() 可以看到聚类效果还是不错的,对k-means的聚类效率进行了一个测试,将维度扩宽到50维
对于百万级的数据,拟合时间还是能够接受的,可见效率还是不错,对模型的保存与其它的机器学习算法模型保存类似 from sklearn.externals import joblib joblib.dump(km,"model/km_model.m") 总结 以上就是本文关于详解K-means算法在Python中的实现的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站: Python实现调度算法代码详解 Python算法输出1-9数组形成的结果为100的所有运算式 Python编程实现蚁群算法详解 如有不足之处,欢迎留言指出。感谢朋友们对本站的支持! (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |