python实现随机梯度下降(SGD)
发布时间:2020-12-17 07:43:59  所属栏目:Python  来源:网络整理 
            导读:使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义): def SGD(self,training_data,epochs,mini_batch_size,eta,test_data=None): if test_data: n_test = len(test
                
                
                
            | 使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义): 
def SGD(self,training_data,epochs,mini_batch_size,eta,test_data=None):
  if test_data:
    n_test = len(test_data)#有多少个测试集
    n = len(training_data)
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [
        training_data[k:k+mini_batch_size] 
        for k in xrange(0,n,mini_batch_size)]
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch,eta)
      if test_data:
        print "Epoch {0}: {1}/{2}".format(j,self.evaluate(test_data),n_test)
      else:
        print "Epoch {0} complete".format(j)  
其中training_data是训练集,是由很多的tuples(元组)组成。每一个元组(x,y)代表一个实例,x是图像的向量表示,y是图像的类别。 
def update_mini_batch(self,mini_batch,eta): 
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  for x,y in mini_batch:
    delta_nabla_b,delta_nable_w = self.backprop(x,y)#目标函数对b和w的偏导数
    nabla_b = [nb+dnb for nb,dnb in zip(nabla_b,delta_nabla_b)]
    nabla_w = [nw+dnw for nw,dnw in zip(nabla_w,delta_nabla_w)]#累加b和w
  #最终更新权重为
  self.weights = [w-(eta/len(mini_batch))*nw for w,nw in zip(self.weights,nabla_w)]
  self.baises = [b-(eta/len(mini_batch))*nb for b,nb in zip(self.baises,nabla_b)]
这个update_mini_batch函数根据你传入的一些数据进行更新神经网络的权重和偏置。 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! | 
