Python cookbook(数据结构与算法)找到最大或最小的N个元素实现
本篇章节讲解python找到最大或最小的N个元素实现方法。分享给大家供大家参考,具体如下: 问题:想在某个集合中找出最大或最小的N个元素 解决方案:heapq模块中的 >>> import heapq >>> nums=[1,8,2,23,7,-4,18,42,37,2] >>> print(heapq.nlargest(3,nums)) [42,23] >>> print(heapq.nsmallest(3,nums)) [-4,1,2] >>> 这两个函数接受一个参数key,允许其工作在更复杂的数据结构之上: # example.py # # Example of using heapq to find the N smallest or largest items import heapq portfolio = [ {'name': 'IBM','shares': 100,'price': 91.1},{'name': 'AAPL','shares': 50,'price': 543.22},{'name': 'FB','shares': 200,'price': 21.09},{'name': 'HPQ','shares': 35,'price': 31.75},{'name': 'YHOO','shares': 45,'price': 16.35},{'name': 'ACME','shares': 75,'price': 115.65} ] cheap = heapq.nsmallest(3,portfolio,key=lambda s: s['price']) expensive = heapq.nlargest(3,key=lambda s: s['price']) print(cheap) print(expensive) Python 3.4.0 (v3.4.0:04f714765c13,Mar 16 2014,19:24:06) [MSC v.1600 32 bit (Intel)] on win32 Type "copyright","credits" or "license()" for more information. >>> ================================ RESTART ================================ >>> [{'name': 'YHOO','price': 16.35,'shares': 45},'price': 21.09,'shares': 200},'price': 31.75,'shares': 35}] [{'name': 'AAPL','price': 543.22,'shares': 50},'price': 115.65,'shares': 75},{'name': 'IBM','price': 91.1,'shares': 100}] >>> 如果正在寻找的最大或最小的N个元素,且相比于集合中元素的数量,N很小时,下面的函数性能更好。 这些函数首先会在底层将数据转化为列表,且元素会以堆的顺序排列。 >>> import heapq >>> nums=[1,2] >>> heap=list(nums) >>> heap [1,2] >>> heapq.heapify(heap) #heapify()参数必须是list,此函数将list变成堆,实时操作。从而能够在任何情况下使用堆的函数。 >>> heap [-4,8] >>> heapq.heappop(heap)#如下是为了找到第3小的元素 -4 >>> heapq.heappop(heap) 1 >>> heapq.heappop(heap) 2 >>> 堆(heap)最重要的特性就是heap[0]总是最小的元素。可通过 总结: 1、当要找的元素数量相对较小时,函数 >>> h=[] #定义一个list >>> from heapq import * #引入heapq模块 >>> h [] >>> heappush(h,5) #向堆中依次增加数值 >>> heappush(h,2) >>> heappush(h,3) >>> heappush(h,9) >>> h #h的值 [2,5,3,9] >>> heappop(h) #从h中删除最小的,并返回该值 2 >>> h [3,9] >>> h.append(1) #注意,如果不是压入堆中,而是通过append追加一个数值 >>> h #堆的函数并不能操作这个增加的数值,或者说它堆对来讲是不存在的 [3,9,1] >>> heappop(h) #从h中能够找到的最小值是3,而不是1 3 >>> heappush(h,2) #这时,不仅将2压入到堆内,而且1也进入了堆。 >>> h [1,5] >>> heappop(h) #操作对象已经包含了1 1 >>> h [1,5] >>> heappop(h) 1 >>> heappushpop(h,4) #增加4同时删除最小值2并返回该最小值,与下列操作等同: 2 #heappush(h,4),heappop(h) >>> h [4,9] >>> a=[3,6,1] >>> heapify(a) #将a变成堆之后,可以对其操作 >>> heappop(a) 1 >>> b=[4,5] #b不是堆,如果对其进行操作,显示结果如下 >>> heappop(b) #按照顺序,删除第一个数值并返回,不会从中挑选出最小的 4 >>> heapify(b) #变成堆之后,再操作 >>> heappop(b) 2 >>> a=[] >>> heapreplace(a,3) #如果list空,则报错 Traceback (most recent call last): File "<stdin>",line 1,in <module> IndexError: index out of range >>> heappush(a,3) >>> a [3] >>> heapreplace(a,2) #先执行删除(heappop(a)->3),再执行加入(heappush(a,2)) 3 >>> a [2] >>> heappush(a,5) >>> heappush(a,9) >>> heappush(a,4) >>> a [2,4,5] >>> heapreplace(a,6) #先从堆a中找出最小值并返回,然后加入6 2 >>> a [4,6] >>> heapreplace(a,1) #1是后来加入的,在1加入之前,a中的最小值是4 4 >>> a [1,6] >>> a=[2,6] >>> b=[1,5] >>> c=merge(a,b) >>> list(c) [1,6] 更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》 希望本文所述对大家Python程序设计有所帮助。 您可能感兴趣的文章:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |