Python使用稀疏矩阵节省内存实例
推荐系统中经常需要处理类似user_id,item_id,rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1、不能很好的同时支持data[i,...]、data[...,j]、data[i,j]快速切片; 要支持data[i,j]的快速切片,需要i或者j的数据集中存储;同时,为了保存海量的数据,也需要把数据的一部分放在硬盘上,用内存做buffer。这里的解决方案比较简单,用一个类Dict的东西来存储数据,对于某个i(比如9527),它的数据保存在dict['i9527']里面,同样的,对于某个j(比如3306),它的全部数据保存在dict['j3306']里面,需要取出data[9527,...]的时候,只要取出dict['i9527']即可,dict['i9527']原本是一个dict对象,储存某个j对应的值,为了节省内存空间,我们把这个dict以二进制字符串形式存储,直接上代码: 复制代码 代码如下: ''' 测试代码: 复制代码 代码如下: import timeit timeit.Timer('foo = __main__.data[9527,...]','import __main__').timeit(number = 1000) 消耗1.4788秒,大概读取一条数据1.5ms。 好了,码完收工。 您可能感兴趣的文章:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |