双十一来了,准备好你的钱包了吗?Python爬取商品信息并可视化
有态度地学习 对于Ajax加载的网页已经分析了好几回,这回来说说利用selenium自动化获取网页信息。 通常对于异步加载的网页,我们需要查找网页的真正请求,并且去构造请求参数,最后才能得到真正的请求网址。而利用selenium通过模拟浏览器操作,则无需去考虑那么多,做到可见即可爬。 当然带来便捷的同时,也有着不利,比如说时间上会有所增加,效率降低。可是对于业余爬虫而言,更快的爬取,并不是那么的重要。 首先在电脑的PyCharm上安装selenium,然后下载与电脑上谷歌浏览器相对应版本的ChromeDriver。由于我的Mac系统版本较新,需要先关闭Rootless内核保护机制,才能够安装,所以也是折腾一番后才成功安装。 针对京东商城笔记本的网页进行分析,这回只要在网页源码上分析,就可以获取笔记本价格、标题、评论数、商家名称、商家性质。 进群:548377875? 即可获取大量的学习资料以及从零开始的PDF十套哦! 爬取代码如下: from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.by import By from selenium import webdriver from bs4 import BeautifulSoup import pymongo import time # 连接数据库 client = pymongo.MongoClient(host='localhost',port=27017) db = client.JD_products collection = db.products # 启动浏览器 browser = webdriver.Chrome() wait = WebDriverWait(browser,50) def to_mongodb(data): # 存储数据信息 try: collection.insert(data) print("Insert The Data Successfully") except: print('Insert The Data Failed') def search(): browser.get('https://www.jd.com/') try: # 查找搜索框及搜索按钮,输入信息并点击按钮 input = wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR,"#key"))) submit = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR,"#search > div > div.form > button"))) input[0].send_keys('笔记本') submit.click() # 查找笔记本按钮及销量按钮,依次点击按钮 button_1 = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR,"#J_selector > div:nth-child(2) > div > div.sl-value > div.sl-v-list > ul > li:nth-child(1) > a"))) button_1.click() button_2 = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR,"#J_filter > div.f-line.top > div.f-sort > a:nth-child(2)"))) button_2.click() # 获取总页数 page = wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR,'#J_bottomPage > span.p-skip > em:nth-child(1) > b'))) return page[0].text except TimeoutException: search() def next_page(page_number): try: # 滑动到网页底部,加载出所有商品信息 browser.execute_script("window.scrollTo(0,document.body.scrollHeight);") time.sleep(10) html = browser.page_source parse_html(html) # 当网页到达100页时,下一页按钮失效,所以选择结束程序 while page_number == 101: exit() # 查找下一页按钮,并点击按钮 button = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR,'#J_bottomPage > span.p-num > a.pn-next > em'))) button.click() wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR,"#J_goodsList > ul > li:nth-child(60)"))) # 判断翻页成功 wait.until(EC.text_to_be_present_in_element((By.CSS_SELECTOR,"#J_bottomPage > span.p-num > a.curr"),str(page_number))) except TimeoutException: return next_page(page_number) def parse_html(html): """ 解析商品列表网页 """ data = {} soup = BeautifulSoup(html,'html.parser') goods_info = soup.select('.gl-item') # 查看当前页商品数量,了解是否还有未加载的商品 quantity = 'item: ' + str(len(goods_info)) print(quantity) for info in goods_info: # 获取商品标题信息 title = info.select('.p-name.p-name-type-2 a em')[0].text.strip() title = title.replace('爱心东东','') print("title: ",title) data['_id'] = title # 获取商品价格信息 price = info.select('.p-price i')[0].text.strip() price = int(float(price)) print("price: ",price) data['price'] = price # 获取商品的评论数量 commit = info.select('.p-commit strong')[0].text.strip() commit = commit.replace('条评价','') if '万' in commit: commit = commit.split("万") commit = int(float(commit[0]) * 10000) else: commit = int(float(commit.replace('+',''))) print("commit: ",commit) data['commit'] = commit # 获取商品的商店名称 shop_name = info.select('.p-shop a') if (len(shop_name)) == 1: print("shop_name: ",shop_name[0].text.strip()) data['shop_name'] = shop_name[0].text.strip() else: print("shop_name: ",'京东') data['shop_name'] = '京东' # 获取商品的商店属性 shop_property = info.select('.p-icons i') if (len(shop_property)) >= 1: message = shop_property[0].text.strip() if message == '自营': print("shop_property: ",message) data['shop_property'] = message else: print("shop_property: ",'非自营') data['shop_property'] = '非自营' else: print("shop_property: ",'非自营') data['shop_property'] = '非自营' to_mongodb(data) print(data) print(" 虽然一开始就是以笔记本这个关键词去搜索,但是这里还是需要再点击一次笔记本按钮,这是因为直接搜索笔记本会出现平常上课做笔记的那种笔记本,导致会获取无用信息。所以利用京东自身更加详细的归类,得到我们想要的信息。 其中每一个网页有60条商品数据,那么按道理应该有6000条的笔记本商品信息,但是最后却只获取了5992条。 估计两个原因: 1. 在MongoDB中商品的标题为主键,商品标题出现重复 2. 网页未能加载完所有的商品信息 最后成功获取商品信息 读取MongoDB中数据进行可视化分析 from pyecharts import Bar import pandas as pd import numpy as np import pymongo client = pymongo.MongoClient('localhost',27017) db = client.JD_products table = db.products df = pd.DataFrame(list(table.find())) shop_message = df[df.shop_property == '自营'].groupby(['shop_name']) shop_com = shop_message['shop_name'].agg(['count']) shop_com.reset_index(inplace=True) shop_com_last = shop_com.sort_values('count',ascending=False)[:12] attr = np.array(shop_com_last['shop_name']) v1 = np.array(shop_com_last['count']) attr = ["{}".format(i.replace('京东','').replace('旗舰店','').replace('自营','').replace('官方','').replace('京东','').replace('电脑','').replace('产品专营店','').replace('工作站','').replace('笔记本','')) for i in attr] v1 = ["{}".format(i) for i in v1] bar = Bar("京东自营商店笔记本种类排行",title_pos='center',title_top='18',width=800,height=400) bar.add("商家",attr,v1,is_convert=True,xaxis_min=10,yaxis_label_textsize=12,is_yaxis_boundarygap=True,yaxis_interval=0,is_label_show=True,is_legend_show=False,label_pos='right',is_yaxis_inverse=True,is_splitline_show=False) bar.render("京东自营商店笔记本种类排行.html") 从上面可以看出,ThinkPad位居榜首,也与后面的词云图有所呼应。商务、办公,因为它就是一款以商务办公为主打品牌的笔记本。此外国内品牌联想、华硕、宏碁、华为也在榜上,支持国货!!! from pyecharts import Bar import pandas as pd import pymongo client = pymongo.MongoClient('localhost',27017) db = client.JD_products table = db.products df = pd.DataFrame(list(table.find())) price_info = df['price'] bins = [0,2000,2500,3000,3500,4000,5000,6000,7000,8000,9000,10000,12000,14000,16000,19000,200000] level = ['0-2000','2000-2500','2500-3000','3000-3500','3500-4000','4000-5000','5000-6000','6000-7000','7000-8000','8000-9000','9000-10000','10000-12000','12000-14000','14000-16000','16000-19000','19000以上'] price_stage = pd.cut(price_info,bins=bins,labels=level).value_counts().sort_index() attr = price_stage.index v1 = price_stage.values bar = Bar('笔记本价格分布柱状图',title_top='10',height=400) bar.add('',is_stack=True,xaxis_rotate=30,yaxis_min=0,xaxis_interval=0,is_splitline_show=False,is_label_show=True) bar.render('笔记本价格分布柱状图.html') 笔记本价格区间在4000-6000有较大的集中,也一定程度反应出了现在笔记本的中间价位,记得刚上大学那会,价格在5000+的笔记本就能有着不错的配置,LOL特效全开。 from pyecharts import Pie import pandas as pd import pymongo client = pymongo.MongoClient('localhost',27017) db = client.JD_products table = db.products df = pd.DataFrame(list(table.find())) shop_message = df.groupby(['shop_property']) shop_com = shop_message['shop_property'].agg(['count']) shop_com.reset_index(inplace=True) shop_com_last = shop_com.sort_values('count',ascending=False) attr = shop_com_last['shop_property'] v1 = shop_com_last['count'] pie = Pie('商店性质',height=400) pie.add('',radius=[40,75],label_text_color=None,legend_orient='vertical',legend_pos='left') pie.render('商店性质.html') 统计下来自营与非自营,还是小巫见大巫。京东和淘宝最大的区别就是京东有自营产品,送货也快。虽说自营的也有假货,但是还是小概率事件。购买电子产品时,比如手机、电脑等,对于我这种小白而言,我第一选择就是去官网或者京东自营店购买,我是绝对不会去电子城和奸商们斗智斗勇的,即使可能价格会低点。但是官网一般快递比较慢,需要个3-5天,而京东可能只需1-2天,所以京东算是我购买的最优选择。 from wordcloud import WordCloud,STOPWORDS,ImageColorGenerator import matplotlib.pyplot as plt import pandas as pd import pymongo import jieba import re client = pymongo.MongoClient('localhost',27017) db = client.JD_products table = db.products data = pd.DataFrame(list(table.find())) data = data[['_id']] text = '' for line in data['_id']: r = '[a-zA-Z0-9’!"#$%&'()*+,-./:;<=>?@,。?★、…【】《》?“”‘’![]^_`{|}~]+' line = re.sub(r,'',line.replace('笔记本电脑','').replace('英寸','')) text += ' '.join(jieba.cut(line,cut_all=False)) backgroud_Image = plt.imread('computer.jpeg') wc = WordCloud( background_color='white',mask=backgroud_Image,font_path='msyh.ttf',max_words=2000,stopwords=STOPWORDS,max_font_size=130,random_state=30 ) wc.generate_from_text(text) img_colors = ImageColorGenerator(backgroud_Image) wc.recolor(color_func=img_colors) plt.imshow(wc) plt.axis('off') wc.to_file("computer.jpg") print("生成词云成功") 这里把标题中笔记本配置参数全部用正则筛选掉。虽说笔记本参数决定了笔记本的性能,不过真正的去购买一台笔记本时,最重要的还是根据自己的需求和预算,然后再去考虑笔记本参数,最后选择一部适合自己的笔记本。一般的笔记本参数如下: CPU:酷睿系列i3、i5、i7,标压M与低压U 硬盘:500G、1T、2T 显卡:AMD,NVIDIA 内存:4G,8G (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |