基础语法
Python 是一门高阶、动态类型的多范式编程语言;定义 Python 文件的时候我们往往会先声明文件编码方式:
# 指定脚本调用方式
#!/usr/bin/env python
# 配置 utf-8 编码
# -*- coding: utf-8 -*-
# 配置其他编码
# -*- coding: -*-
# Vim 中还可以使用如下方式
# vim:fileencoding=
人生苦短,请用 Python,大量功能强大的语法糖的同时让很多时候 Python 代码看上去有点像伪代码。譬如我们用 Python 实现的简易的快排相较于 Java 会显得很短小精悍:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) / 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
print quicksort([3,6,8,10,1,2,1])
# Prints "[1,3,10]"进群:548377875
控制台交互
可以根据 __name__ 关键字来判断是否是直接使用 python 命令执行某个脚本,还是外部引用;Google 开源的 fire 也是不错的快速将某个类封装为命令行工具的框架:
import fire
class Calculator(object):
"""A simple calculator class."""
def double(self,number):
return 2 * number
if __name__ == '__main__':
fire.Fire(Calculator)
# python calculator.py double 10 # 20
# python calculator.py double --number=15 # 30
Python 2 中 print 是表达式,而 Python 3 中 print 是函数;如果希望在 Python 2 中将 print 以函数方式使用,则需要自定义引入:
from __future__ import print_function
我们也可以使用 pprint 来美化控制台输出内容:
import pprint
stuff = ['spam','eggs','lumberjack','knights','ni']
pprint.pprint(stuff)
# 自定义参数
pp = pprint.PrettyPrinter(depth=6)
tup = ('spam',('eggs',('lumberjack',('knights',('ni',('dead',('parrot',('fresh fruit',))))))))
pp.pprint(tup)
模块
Python 中的模块(Module)即是 Python 源码文件,其可以导出类、函数与全局变量;当我们从某个模块导入变量时,函数名往往就是命名空间(Namespace)。而 Python 中的包(Package)则是模块的文件夹,往往由 __init__.py 指明某个文件夹为包:
# 文件目录
someDir/
main.py
siblingModule.py
# siblingModule.py
def siblingModuleFun():
print('Hello from siblingModuleFun')
def siblingModuleFunTwo():
print('Hello from siblingModuleFunTwo')
import siblingModule
import siblingModule as sibMod
sibMod.siblingModuleFun()
from siblingModule import siblingModuleFun
siblingModuleFun()
try:
# Import 'someModuleA' that is only available in Windows
import someModuleA
except ImportError:
try:
# Import 'someModuleB' that is only available in Linux
import someModuleB
except ImportError:
Package 可以为某个目录下所有的文件设置统一入口:
someDir/
main.py
subModules/
__init__.py
subA.py
subSubModules/
__init__.py
subSubA.py
# subA.py
def subAFun():
print('Hello from subAFun')
def subAFunTwo():
print('Hello from subAFunTwo')
# subSubA.py
def subSubAFun():
print('Hello from subSubAFun')
def subSubAFunTwo():
print('Hello from subSubAFunTwo')
# __init__.py from subDir
# Adds 'subAFun()' and 'subAFunTwo()' to the 'subDir' namespace
from .subA import *
# The following two import statement do the same thing,they add 'subSubAFun()' and 'subSubAFunTwo()' to the 'subDir' namespace. The first one assumes '__init__.py' is empty in 'subSubDir',and the second one,assumes '__init__.py' in 'subSubDir' contains 'from .subSubA import *'.
# Assumes '__init__.py' is empty in 'subSubDir'
# Adds 'subSubAFun()' and 'subSubAFunTwo()' to the 'subDir' namespace
from .subSubDir.subSubA import *
# Assumes '__init__.py' in 'subSubDir' has 'from .subSubA import *'
# Adds 'subSubAFun()' and 'subSubAFunTwo()' to the 'subDir' namespace
from .subSubDir import *
# __init__.py from subSubDir
# Adds 'subSubAFun()' and 'subSubAFunTwo()' to the 'subSubDir' namespace
from .subSubA import *
# main.py
import subDir
subDir.subAFun() # Hello from subAFun
subDir.subAFunTwo() # Hello from subAFunTwo
subDir.subSubAFun() # Hello from subSubAFun
subDir.subSubAFunTwo() # Hello from subSubAFunTwo
?
表达式与控制流
条件选择
Python 中使用 if、elif、else 来进行基础的条件选择操作:
if x < 0:
x = 0
print('Negative changed to zero')
elif x == 0:
print('Zero')
else:
print('More')
Python 同样支持 ternary conditional operator:
a if condition else b
也可以使用 Tuple 来实现类似的效果:
# test 需要返回 True 或者 False
(falseValue,trueValue)[test]
# 更安全的做法是进行强制判断
(falseValue,trueValue)[test == True]
# 或者使用 bool 类型转换函数
(falseValue,trueValue)[bool()]
进行强制判断(falseValue,trueValue)[test == True]# 或者使用 bool 类型转换函数(falseValue,trueValue)[bool()]
循环遍历
for-in 可以用来遍历数组与字典:
words = ['cat','window','defenestrate']
for w in words:
print(w,len(w))
# 使用数组访问操作符,能够迅速地生成数组的副本
for w in words[:]:
if len(w) > 6:
words.insert(0,w)
# words -> ['defenestrate','cat','defenestrate']
如果我们希望使用数字序列进行遍历,可以使用 Python 内置的 range 函数:
a = ['Mary','had','a','little','lamb']
for i in range(len(a)):
print(i,a[i])
?
基本数据类型
可以使用内建函数进行强制类型转换(Casting):
int(str)
float(str)
str(int)
str(float)
Number: 数值类型
x = 3
print type(x) # Prints ""
print x # Prints "3"
print x + 1 # Addition; prints "4"
print x - 1 # Subtraction; prints "2"
print x * 2 # Multiplication; prints "6"
print x ** 2 # Exponentiation; prints "9"
x += 1
print x # Prints "4"
x *= 2
print x # Prints "8"
y = 2.5
print type(y) # Prints ""
print y,y + 1,y * 2,y ** 2 # Prints "2.5 3.5 5.0 6.25"
布尔类型
Python 提供了常见的逻辑操作符,不过需要注意的是 Python 中并没有使用 &&、|| 等,而是直接使用了英文单词。
t = True
f = False
print type(t) # Prints ""
print t and f # Logical AND; prints "False"
print t or f # Logical OR; prints "True"
print not t # Logical NOT; prints "False"
print t != f # Logical XOR; prints "True"
String: 字符串
Python 2 中支持 Ascii 码的 str() 类型,独立的 unicode() 类型,没有 byte 类型;而 Python 3 中默认的字符串为 utf-8 类型,并且包含了 byte 与 bytearray 两个字节类型:
type("Guido") # string type is str in python2
#
# 使用 __future__ 中提供的模块来降级使用 Unicode
from __future__ import unicode_literals
type("Guido") # string type become unicode
#
Python 字符串支持分片、模板字符串等常见操作:
var1 = 'Hello World!'
var2 = "Python Programming"
print "var1[0]: ",var1[0]
print "var2[1:5]: ",var2[1:5]
# var1[0]: H
# var2[1:5]: ytho
print "My name is %s and weight is %d kg!" % ('Zara',21)
# My name is Zara and weight is 21 kg!
str[0:4]
len(str)
string.replace("-"," ")
",".join(list)
"hi {0}".format('j')
str.find(",")
str.index(",") # same,but raises IndexError
str.count(",")
str.split(",")
str.lower()
str.upper()
str.title()
str.lstrip()
str.rstrip()
str.strip()
str.islower()
# 移除所有的特殊字符
re.sub('[^A-Za-z0-9]+','',mystring)
如果需要判断是否包含某个子字符串,或者搜索某个字符串的下标:
# in 操作符可以判断字符串
if "blah" not in somestring:
continue
# find 可以搜索下标
s = "This be a string"
if s.find("is") == -1:
print "No 'is' here!"
else:
print "Found 'is' in the string."
Regex: 正则表达式
import re
# 判断是否匹配
re.match(r'^[aeiou]',str)
# 以第二个参数指定的字符替换原字符串中内容
re.sub(r'^[aeiou]','?',str)
re.sub(r'(xyz)',r'',str)
# 编译生成独立的正则表达式对象
expr = re.compile(r'^...$')
expr.match(...)
expr.sub(...)
下面列举了常见的表达式使用场景:
# 检测是否为 HTML 标签
re.search('<[^/>][^>]*>','
?
集合类型
List: 列表
Operation: 创建增删
list 是基础的序列类型:
l = []
l = list()
# 使用字符串的 split 方法,可以将字符串转化为列表
str.split(".")
# 如果需要将数组拼装为字符串,则可以使用 join
list1 = ['1','2','3']
str1 = ''.join(list1)
# 如果是数值数组,则需要先进行转换
list1 = [1,3]
str1 = ''.join(str(e) for e in list1)
可以使用 append 与 extend 向数组中插入元素或者进行数组连接
x = [1,3]
x.append([4,5]) # [1,[4,5]]
x.extend([4,4,5],注意 extend 返回值为 None
可以使用 pop、slices、del、remove 等移除列表中元素:
myList = [10,20,30,40,50]
# 弹出第二个元素
myList.pop(1) # 20
# myList: myList.pop(1)
# 如果不加任何参数,则默认弹出最后一个元素
myList.pop()
# 使用 slices 来删除某个元素
a = [ 1,5,6 ]
index = 3 # Only Positive index
a = a[:index] + a[index+1 :]
# 根据下标删除元素
myList = [10,50]
rmovIndxNo = 3
del myList[rmovIndxNo] # myList: [10,50]
# 使用 remove 方法,直接根据元素删除
letters = ["a","b","c","d","e"]
numbers.remove(numbers[1])
print(*letters) # used a * to make it unpack you don't have to
Iteration: 索引遍历
你可以使用基本的 for 循环来遍历数组中的元素,就像下面介个样纸:
animals = ['cat','dog','monkey']
for animal in animals:
print animal
# Prints "cat","dog","monkey",each on its own line.
如果你在循环的同时也希望能够获取到当前元素下标,可以使用 enumerate 函数:
animals = ['cat','monkey']
for idx,animal in enumerate(animals):
print '#%d: %s' % (idx + 1,animal)
# Prints "#1: cat","#2: dog","#3: monkey",each on its own line
Python 也支持切片(Slices)
:
nums = range(5) # range is a built-in function that creates a list of integers
print nums # Prints "[0,4]"
print nums[2:4] # Get a slice from index 2 to 4 (exclusive); prints "[2,3]"
print nums[2:] # Get a slice from index 2 to the end; prints "[2,4]"
print nums[:2] # Get a slice from the start to index 2 (exclusive); prints "[0,1]"
print nums[:] # Get a slice of the whole list; prints ["0,4]"
print nums[:-1] # Slice indices can be negative; prints ["0,3]"
nums[2:4] = [8,9] # Assign a new sublist to a slice
print nums # Prints "[0,9,4]"
Comprehensions: 变换
Python 中同样可以使用 map、reduce、filter,map 用于变换数组:
# 使用 map 对数组中的每个元素计算平方
items = [1,5]
squared = list(map(lambda x: x**2,items))
# map 支持函数以数组方式连接使用
def multiply(x):
return (x*x)
def add(x):
return (x+x)
funcs = [multiply,add]
for i in range(5):
value = list(map(lambda x: x(i),funcs))
print(value)
reduce 用于进行归纳计算:
# reduce 将数组中的值进行归纳
from functools import reduce
product = reduce((lambda x,y: x * y),[1,4])
# Output: 24
filter 则可以对数组进行过滤:
number_list = range(-5,5)
less_than_zero = list(filter(lambda x: x < 0,number_list))
print(less_than_zero)
# Output: [-5,-4,-3,-2,-1]
字典类型
创建增删
d = {'cat': 'cute','dog': 'furry'} # 创建新的字典
print d['cat'] # 字典不支持点(Dot)运算符取值
如果需要合并两个或者多个字典类型:
# python 3.5
z = {**x,**y}
# python 2.7
def merge_dicts(*dict_args):
"""
Given any number of dicts,shallow copy and merge into a new dict,precedence goes to key value pairs in latter dicts.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
索引遍历
可以根据键来直接进行元素访问:
# Python 中对于访问不存在的键会抛出 KeyError 异常,需要先行判断或者使用 get
print 'cat' in d # Check if a dictionary has a given key; prints "True"
# 如果直接使用 [] 来取值,需要先确定键的存在,否则会抛出异常
print d['monkey'] # KeyError: 'monkey' not a key of d
# 使用 get 函数则可以设置默认值
print d.get('monkey','N/A') # Get an element with a default; prints "N/A"
print d.get('fish','N/A') # Get an element with a default; prints "wet"
d.keys() # 使用 keys 方法可以获取所有的键
可以使用 for-in 来遍历数组:
# 遍历键
for key in d:
# 比前一种方式慢
for k in dict.keys(): ...
# 直接遍历值
for value in dict.itervalues(): ...
# Python 2.x 中遍历键值
for key,value in d.iteritems():
# Python 3.x 中遍历键值
for key,value in d.items():
其他序列类型
集合
# Same as {"a","c"}
normal_set = set(["a","c"])
# Adding an element to normal set is fine
normal_set.add("d")
print("Normal Set")
print(normal_set)
# A frozen set
frozen_set = frozenset(["e","f","g"])
print("Frozen Set")
print(frozen_set)
# Uncommenting below line would cause error as
# we are trying to add element to a frozen set
# frozen_set.add("h")
?
函数
函数定义
Python 中的函数使用 def 关键字进行定义,譬如:
def sign(x):
if x > 0:
return 'positive'
elif x < 0:
return 'negative'
else:
return 'zero'
for x in [-1,1]:
print sign(x)
# Prints "negative","zero","positive"
Python 支持运行时创建动态函数,也即是所谓的 lambda 函数:
def f(x): return x**2
# 等价于
g = lambda x: x**2
参数
Option Arguments: 不定参数
def example(a,b=None,*args,**kwargs):
print a,b
print args
print kwargs
example(1,"var",word="hello")
# 1 var
# (2,3)
# {'word': 'hello'}
a_tuple = (1,5)
a_dict = {"1":1,"2":2,"3":3}
example(1,*a_tuple,**a_dict)
# 1 var
# (1,5)
# {'1': 1,'2': 2,'3': 3}
生成器
def simple_generator_function():
yield 1
yield 2
yield 3
for value in simple_generator_function():
print(value)
# 输出结果
# 1
# 2
# 3
our_generator = simple_generator_function()
next(our_generator)
# 1
next(our_generator)
# 2
next(our_generator)
#3
# 生成器典型的使用场景譬如无限数组的迭代
def get_primes(number):
while True:
if is_prime(number):
yield number
number += 1
装饰器
装饰器是非常有用的设计模式:
# 简单装饰器
from functools import wraps
def decorator(func):
@wraps(func)
def wrapper(*args,**kwargs):
print('wrap function')
return func(*args,**kwargs)
return wrapper
@decorator
def example(*a,**kw):
pass
example.__name__ # attr of function preserve
# 'example'
# Decorator
# 带输入值的装饰器
from functools import wraps
def decorator_with_argument(val):
def decorator(func):
@wraps(func)
def wrapper(*args,**kwargs):
print "Val is {0}".format(val)
return func(*args,**kwargs)
return wrapper
return decorator
@decorator_with_argument(10)
def example():
print "This is example function."
example()
# Val is 10
# This is example function.
# 等价于
def example():
print "This is example function."
example = decorator_with_argument(10)(example)
example()
# Val is 10
# This is example function.
?
类与对象
类定义
Python 中对于类的定义也很直接:
class Greeter(object):
# Constructor
def __init__(self,name):
self.name = name # Create an instance variable
# Instance method
def greet(self,loud=False):
if loud:
print 'HELLO,%s!' % self.name.upper()
else:
print 'Hello,%s' % self.name
g = Greeter('Fred') # Construct an instance of the Greeter class
g.greet() # Call an instance method; prints "Hello,Fred"
g.greet(loud=True) # Call an instance method; prints "HELLO,FRED!"
# isinstance 方法用于判断某个对象是否源自某个类
ex = 10
isinstance(ex,int)
Managed Attributes: 受控属性
# property、setter、deleter 可以用于复写点方法
class Example(object):
def __init__(self,value):
self._val = value
@property
def val(self):
return self._val
@val.setter
def val(self,value):
if not isintance(value,int):
raise TypeError("Expected int")
self._val = value
@val.deleter
def val(self):
del self._val
@property
def square3(self):
return 2**3
ex = Example(123)
ex.val = "str"
# Traceback (most recent call last):
# File "",line 1,in
# File "test.py",line 12,in val
# raise TypeError("Expected int")
# TypeError: Expected int
类方法与静态方法
class example(object):
@classmethod
def clsmethod(cls):
print "I am classmethod"
@staticmethod
def stmethod():
print "I am staticmethod"
def instmethod(self):
print "I am instancemethod"
ex = example()
ex.clsmethod()
# I am classmethod
ex.stmethod()
# I am staticmethod
ex.instmethod()
# I am instancemethod
example.clsmethod()
# I am classmethod
example.stmethod()
# I am staticmethod
example.instmethod()
# Traceback (most recent call last):
# File "",in
# TypeError: unbound method instmethod() ...
对象
实例化
属性操作
Python 中对象的属性不同于字典键,可以使用点运算符取值,直接使用 in 判断会存在问题:
class A(object):
@property
def prop(self):
return 3
a = A()
print "'prop' in a.__dict__ =",'prop' in a.__dict__
print "hasattr(a,'prop') =",hasattr(a,'prop')
print "a.prop =",a.prop
# 'prop' in a.__dict__ = False
# hasattr(a,'prop') = True
# a.prop = 3
建议使用 hasattr、getattr、setattr 这种方式对于对象属性进行操作:
class Example(object):
def __init__(self):
self.name = "ex"
def printex(self):
print "This is an example"
# Check object has attributes
# hasattr(obj,'attr')
ex = Example()
hasattr(ex,"name")
# True
hasattr(ex,"printex")
# True
hasattr(ex,"print")
# False
# Get object attribute
# getattr(obj,'attr')
getattr(ex,'name')
# 'ex'
# Set object attribute
# setattr(obj,'attr',value)
setattr(ex,'name','example')
ex.name
# 'example'
'
?
异常与测试
异常处理
Context Manager - with
with 常用于打开或者关闭某些资源:
host = 'localhost'
port = 5566
with Socket(host,port) as s:
while True:
conn,addr = s.accept()
msg = conn.recv(1024)
print msg
conn.send(msg)
conn.close()
单元测试
from __future__ import print_function
import unittest
def fib(n):
return 1 if n<=2 else fib(n-1)+fib(n-2)
def setUpModule():
print("setup module")
def tearDownModule():
print("teardown module")
class TestFib(unittest.TestCase):
def setUp(self):
print("setUp")
self.n = 10
def tearDown(self):
print("tearDown")
del self.n
@classmethod
def setUpClass(cls):
print("setUpClass")
@classmethod
def tearDownClass(cls):
print("tearDownClass")
def test_fib_assert_equal(self):
self.assertEqual(fib(self.n),55)
def test_fib_assert_true(self):
self.assertTrue(fib(self.n) == 55)
if __name__ == "__main__":
unittest.main()
?
存储
文件读写
路径处理
Python 内置的 __file__ 关键字会指向当前文件的相对路径,可以根据它来构造绝对路径,或者索引其他文件:
# 获取当前文件的相对目录
dir = os.path.dirname(__file__) # srcapp
## once you're at the directory level you want,with the desired directory as the final path node:
dirname1 = os.path.basename(dir)
dirname2 = os.path.split(dir)[1] ## if you look at the documentation,this is exactly what os.path.basename does.
# 获取当前代码文件的绝对路径,abspath 会自动根据相对路径与当前工作空间进行路径补全
os.path.abspath(os.path.dirname(__file__)) # D:WorkSpaceOWS oolui-tool-svnpythonsrcapp
# 获取当前文件的真实路径
os.path.dirname(os.path.realpath(__file__)) # D:WorkSpaceOWS oolui-tool-svnpythonsrcapp
# 获取当前执行路径
os.getcwd()
可以使用 listdir、walk、glob 模块来进行文件枚举与检索:
# 仅列举所有的文件
from os import listdir
from os.path import isfile,join
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath,f))]
# 使用 walk 递归搜索
from os import walk
f = []
for (dirpath,dirnames,filenames) in walk(mypath):
f.extend(filenames)
break
# 使用 glob 进行复杂模式匹配
import glob
print(glob.glob("/home/adam/*.txt"))
# ['/home/adam/file1.txt','/home/adam/file2.txt',.... ]
简单文件读写
# 可以根据文件是否存在选择写入模式
mode = 'a' if os.path.exists(writepath) else 'w'
# 使用 with 方法能够自动处理异常
with open("file.dat",mode) as f:
f.write(...)
...
# 操作完毕之后记得关闭文件
f.close()
# 读取文件内容
message = f.read()
复杂格式文件
JSON
import json
# Writing JSON data
with open('data.json','w') as f:
json.dump(data,f)
# Reading data back
with open('data.json','r') as f:
data = json.load(f)
XML
我们可以使用 lxml 来解析与处理 XML 文件,本部分即对其常用操作进行介绍。lxml 支持从字符串或者文件中创建 Element 对象:
from lxml import etree
# 可以从字符串开始构造
xml = ''
root = etree.fromstring(xml)
etree.tostring(root)
# b''
# 也可以从某个文件开始构造
tree = etree.parse("doc/test.xml")
# 或者指定某个 baseURL
root = etree.fromstring(xml,base_url="http://where.it/is/from.xml")
其提供了迭代器以对所有元素进行遍历:
# 遍历所有的节点
for tag in tree.iter():
if not len(tag):
print tag.keys() # 获取所有自定义属性
print (tag.tag,tag.text) # text 即文本子元素值
# 获取 XPath
for e in root.iter():
print tree.getpath(e)
lxml 支持以 XPath 查找元素,不过需要注意的是,XPath 查找的结果是数组,并且在包含命名空间的情况下,需要指定命名空间:
root.xpath('//page/text/text()',ns={prefix:url})
# 可以使用 getparent 递归查找父元素
el.getparent()
lxml 提供了 insert、append 等方法进行元素操作:
# append 方法默认追加到尾部
st = etree.Element("state",name="New Mexico")
co = etree.Element("county",name="Socorro")
st.append(co)
# insert 方法可以指定位置
node.insert(0,newKid)
Excel
可以使用 [xlrd]() 来读取 Excel 文件,使用 xlsxwriter 来写入与操作 Excel 文件。
# 读取某个 Cell 的原始值
sh.cell(rx,col).value
# 创建新的文件
workbook = xlsxwriter.Workbook(outputFile)
worksheet = workbook.add_worksheet()
# 设置从第 0 行开始写入
row = 0
# 遍历二维数组,并且将其写入到 Excel 中
for rowData in array:
for col,data in enumerate(rowData):
worksheet.write(row,col,data)
row = row + 1
workbook.close()
文件系统
对于高级的文件操作,我们可以使用 Python 内置的 shutil
# 递归删除 appName 下面的所有的文件夹
shutil.rmtree(appName)
?
网络交互
Requests
Requests 是优雅而易用的 Python 网络请求库:
import requests
r = requests.get('https://api.github.com/events')
r = requests.get('https://api.github.com/user',auth=('user','pass'))
r.status_code
# 200
r.headers['content-type']
# 'application/json; charset=utf8'
r.encoding
# 'utf-8'
r.text
# u'{"type":"User"...'
r.json()
# {u'private_gists': 419,u'total_private_repos': 77,...}
r = requests.put('http://httpbin.org/put',data = {'key':'value'})
r = requests.delete('http://httpbin.org/delete')
r = requests.head('http://httpbin.org/get')
r = requests.options('http://httpbin.org/get')
?
数据存储
MySQL
import pymysql.cursors
# Connect to the database
connection = pymysql.connect(host='localhost',user='user',password='passwd',db='db',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor)
try:
with connection.cursor() as cursor:
# Create a new record
sql = "INSERT INTO `users` (`email`,`password`) VALUES (%s,%s)"
cursor.execute(sql,('webmaster@python.org','very-secret'))
# connection is not autocommit by default. So you must commit to save
# your changes.
connection.commit()
with connection.cursor() as cursor:
# Read a single record
sql = "SELECT `id`,`password` FROM `users` WHERE `email`=%s"
cursor.execute(sql,))
result = cursor.fetchone()
print(result)
finally:
connection.close()
 (编辑:李大同)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|