学习Python3 Dlib19.7进行人脸面部识别
0.引言 自己在下载dlib官网给的example代码时,一开始不知道怎么使用,在一番摸索之后弄明白怎么使用了; 现分享下 face_detector.py 和 face_landmark_detection.py 这两个py的使用方法; 1.简介 python: 3.6.3 dlib: 19.7 利用dlib的特征提取器,进行人脸 矩形框 的特征提取: dets = dlib.get_frontal_face_detector(img) 利用dlib的68点特征预测器,进行人脸 68点 特征提取: predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") shape = predictor(img,dets[0]) 效果: (a) face_detector.py b) face_landmark_detection.py 2.py文件功能介绍 face_detector.py : 识别出图片文件中一张或多张人脸,并用矩形框框出标识出人脸; link: http://dlib.net/cnn_face_detector.py.html face_landmark_detection.py :在face_detector.py的识别人脸基础上,识别出人脸部的具体特征部位:下巴轮廓、眉毛、眼睛、嘴巴,同样用标记标识出面部特征; link: http://dlib.net/face_landmark_detection.py.html 2.1. face_detector.py 官网给的face_detector.py #!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example program shows how to find frontal human faces in an image. In # particular,it shows how you can take a list of images from the command # line and display each on the screen with red boxes overlaid on each human # face. # # The examples/faces folder contains some jpg images of people. You can run # this program on them and see the detections by executing the # following command: # ./face_detector.py ../examples/faces/*.jpg # # This face detector is made using the now classic Histogram of Oriented # Gradients (HOG) feature combined with a linear classifier,an image # pyramid,and sliding window detection scheme. This type of object detector # is fairly general and capable of detecting many types of semi-rigid objects # in addition to human faces. Therefore,if you are interested in making # your own object detectors then read the train_object_detector.py example # program. # # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: # pip install dlib # # Alternatively,if you want to compile dlib yourself then go into the dlib # root folder and run: # python setup.py install # or # python setup.py install --yes USE_AVX_INSTRUCTIONS # if you have a CPU that supports AVX instructions,since this makes some # things run faster. # # Compiling dlib should work on any operating system so long as you have # CMake and boost-python installed. On Ubuntu,this can be done easily by # running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires scikit-image which can be installed # via the command: # pip install scikit-image # Or downloaded from http://scikit-image.org/download.html. import sys import dlib from skimage import io detector = dlib.get_frontal_face_detector() win = dlib.image_window() for f in sys.argv[1:]: print("Processing file: {}".format(f)) img = io.imread(f) # The 1 in the second argument indicates that we should upsample the image # 1 time. This will make everything bigger and allow us to detect more # faces. dets = detector(img,1) print("Number of faces detected: {}".format(len(dets))) for i,d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( i,d.left(),d.top(),d.right(),d.bottom())) win.clear_overlay() win.set_image(img) win.add_overlay(dets) dlib.hit_enter_to_continue() # Finally,if you really want to you can ask the detector to tell you the score # for each detection. The score is bigger for more confident detections. # The third argument to run is an optional adjustment to the detection threshold,# where a negative value will return more detections and a positive value fewer. # Also,the idx tells you which of the face sub-detectors matched. This can be # used to broadly identify faces in different orientations. if (len(sys.argv[1:]) > 0): img = io.imread(sys.argv[1]) dets,scores,idx = detector.run(img,1,-1) for i,d in enumerate(dets): print("Detection {},score: {},face_type:{}".format( d,scores[i],idx[i])) 为了方便理解,修改增加注释之后的 face_detector.py
import dlib from skimage import io # 使用特征提取器frontal_face_detector detector = dlib.get_frontal_face_detector() # path是图片所在路径 path = "F:/code/python/P_dlib_face/pic/" img = io.imread(path+"1.jpg") # 特征提取器的实例化 dets = detector(img) print("人脸数:",len(dets)) # 输出人脸矩形的四个坐标点 for i,d in enumerate(dets): print("第",i,"个人脸d的坐标:","left:","right:","top:","bottom:",d.bottom()) # 绘制图片 win = dlib.image_window() # 清除覆盖 #win.clear_overlay() win.set_image(img) # 将生成的矩阵覆盖上 win.add_overlay(dets) # 保持图像 dlib.hit_enter_to_continue() 对test.jpg进行人脸检测: 结果: 图片窗口结果: 输出结果: 人脸数: 1 第 0 个人脸: left: 79 right: 154 top: 47 bottom: 121 Hit enter to continue 对于多个人脸的检测结果: 2.2 face_landmark_detection.py 官网给的 face_detector.py #!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example program shows how to find frontal human faces in an image and # estimate their pose. The pose takes the form of 68 landmarks. These are # points on the face such as the corners of the mouth,along the eyebrows,on # the eyes,and so forth. # # The face detector we use is made using the classic Histogram of Oriented # Gradients (HOG) feature combined with a linear classifier,an image pyramid,# and sliding window detection scheme. The pose estimator was created by # using dlib's implementation of the paper: # One Millisecond Face Alignment with an Ensemble of Regression Trees by # Vahid Kazemi and Josephine Sullivan,CVPR 2014 # and was trained on the iBUG 300-W face landmark dataset (see # https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/): # C. Sagonas,E. Antonakos,G,Tzimiropoulos,S. Zafeiriou,M. Pantic. # 300 faces In-the-wild challenge: Database and results. # Image and Vision Computing (IMAVIS),Special Issue on Facial Landmark Localisation "In-The-Wild". 2016. # You can get the trained model file from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2. # Note that the license for the iBUG 300-W dataset excludes commercial use. # So you should contact Imperial College London to find out if it's OK for # you to use this model file in a commercial product. # # # Also,note that you can train your own models using dlib's machine learning # tools. See train_shape_predictor.py to see an example. # # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: # pip install dlib # # Alternatively,this can be done easily by # running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires scikit-image which can be installed # via the command: # pip install scikit-image # Or downloaded from http://scikit-image.org/download.html. import sys import os import dlib import glob from skimage import io if len(sys.argv) != 3: print( "Give the path to the trained shape predictor model as the first " "argument and then the directory containing the facial images.n" "For example,if you are in the python_examples folder then " "execute this program by running:n" " ./face_landmark_detection.py shape_predictor_68_face_landmarks.dat ../examples/facesn" "You can download a trained facial shape predictor from:n" " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2") exit() predictor_path = sys.argv[1] faces_folder_path = sys.argv[2] detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) win = dlib.image_window() for f in glob.glob(os.path.join(faces_folder_path,"*.jpg")): print("Processing file: {}".format(f)) img = io.imread(f) win.clear_overlay() win.set_image(img) # Ask the detector to find the bounding boxes of each face. The 1 in the # second argument indicates that we should upsample the image 1 time. This # will make everything bigger and allow us to detect more faces. dets = detector(img,1) print("Number of faces detected: {}".format(len(dets))) for k,d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k,d.bottom())) # Get the landmarks/parts for the face in box d. shape = predictor(img,d) print("Part 0: {},Part 1: {} ...".format(shape.part(0),shape.part(1))) # Draw the face landmarks on the screen. win.add_overlay(shape) win.add_overlay(dets) dlib.hit_enter_to_continue() 修改: 绘制两个overlay,矩阵框 和 面部特征 import dlib from skimage import io # 使用特征提取器frontal_face_detector detector = dlib.get_frontal_face_detector() # dlib的68点模型 path_pre = "F:/code/python/P_dlib_face/" predictor = dlib.shape_predictor(path_pre+"shape_predictor_68_face_landmarks.dat") # 图片所在路径 path_pic = "F:/code/python/P_dlib_face/pic/" img = io.imread(path_pic+"1.jpg") # 生成dlib的图像窗口 win = dlib.image_window() win.clear_overlay() win.set_image(img) # 特征提取器的实例化 dets = detector(img,1) print("人脸数:",len(dets)) for k,d in enumerate(dets): print("第",k,d.bottom()) # 利用预测器预测 shape = predictor(img,d) # 绘制面部轮廓 win.add_overlay(shape) # 绘制矩阵轮廓 win.add_overlay(dets) # 保持图像 dlib.hit_enter_to_continue() 结果: 人脸数: 1 第 0 个人脸d的坐标: left: 79 right: 154 top: 47 bottom: 121 图片窗口结果: 蓝色的是绘制的 win.add_overlay(shape) 红色的是绘制的 win.add_overlay(dets) 对于多张人脸的检测结果: 官网例程中是利用sys.argv[]读取命令行输入,其实为了方便我把文件路径写好了,如果对于sys.argv[]有疑惑,可以参照下面的总结: * 关于sys.argv[]的使用: ( 如果对于代码中 sys.argv[] 的使用不了解可以参考这里 ) 用来获取cmd命令行参数,例如 获取cmd命令输入“python test.py XXXXX” 的XXXXX参数,可以用于cmd下读取用户输入的文件路径; 如果不明白可以在python代码内直接 img = imread("F:/*****/test.jpg") 代替 img = imread(sys.argv[1]) 读取图片; 用代码实例来帮助理解: 1.(sys.argv[0],指的是代码文件本身在的路径) test1.py: import sys a=sys.argv[0] print(a) cmd input: python test1.py cmd output: test1.py 2.(sys.argv[1],cmd输入获取的参数字符串中,第一个字符) test2.py: import sys a=sys.argv[1] print(a) cmd input: python test2.py what is your name cmd output: what (sys.argv[1:],cmd输入获取的参数字符串中,从第一个字符开始到结束) test3.py: import sys a=sys.argv[1:] print(a) cmd input: python test3.py what is your name cmd output: [“what”,“is”,“your”,“name”]
3.(sys.argv[2],cmd输入获取的参数字符串中,第二个字符) test4.py: import sys a=sys.argv[2] print(a) cmd input: python test4.py what is your name cmd output: "is" (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |