加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

详解Python中的四种队列

发布时间:2020-12-16 21:11:30 所属栏目:Python 来源:网络整理
导读:队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表。 在Python文档中搜索队列(queue)会发现,Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collections.deque。 collections.deque deq

队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表。

在Python文档中搜索队列(queue)会发现,Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collections.deque。

collections.deque

deque是双端队列(double-ended queue)的缩写,由于两端都能编辑,deque既可以用来实现栈(stack)也可以用来实现队列(queue)。

deque支持丰富的操作方法,主要方法如图:

 

相比于list实现的队列,deque实现拥有更低的时间和空间复杂度。list实现在出队(pop)和插入(insert)时的空间复杂度大约为O(n),deque在出队(pop)和入队(append)时的时间复杂度是O(1)。

deque也支持in操作符,可以使用如下写法:

q = collections.deque([1,2,3,4])
print(5 in q) # False
print(1 in q) # True

deque还封装了顺逆时针的旋转的方法:rotate。

# 顺时针
q = collections.deque([1,4])
q.rotate(1)
print(q) # [4,1,3]
q.rotate(1)
print(q) # [3,4,2]
# 逆时针
q = collections.deque([1,4])
q.rotate(-1)
print(q) # [2,1]
q.rotate(-1)
print(q) # [3,2]

线程安全方面,collections.deque中的append()、pop()等方法都是原子操作,所以是GIL保护下的线程安全方法。

static PyObject *
deque_append(dequeobject *deque,PyObject *item) { 
 Py_INCREF(item);
 if (deque_append_internal(deque,item,deque->maxlen) < 0) 
 return NULL;
 Py_RETURN_NONE;
}

通过dis方法可以看到,append是原子操作(一行字节码)。

 

综上,collections.deque是一个可以方便实现队列的数据结构,具有线程安全的特性,并且有很高的性能。

queue.Queue & asyncio.Queue

queue.Queue和asyncio.Queue都是支持多生产者、多消费者的队列,基于collections.deque,他们都提供了Queue(FIFO队列)、PriorityQueue(优先级队列)、LifoQueue(LIFO队列),接口方面也相同。

区别在于queue.Queue适用于多线程的场景,asyncio.Queue适用于协程场景下的通信,由于asyncio的加成,queue.Queue下的阻塞接口在asyncio.Queue中则是以返回协程对象的方式执行,具体差异如下表:

multiprocessing.Queue

multiprocessing提供了三种队列,分别是Queue、SimpleQueue、JoinableQueue。

 

multiprocessing.Queue既是线程安全也是进程安全的,相当于queue.Queue的多进程克隆版。和threading.Queue很像,multiprocessing.Queue支持put和get操作,底层结构是multiprocessing.Pipe。

multiprocessing.Queue底层是基于Pipe构建的,但是数据传递时并不是直接写入Pipe,而是写入进程本地buffer,通过一个feeder线程写入底层Pipe,这样做是为了实现超时控制和非阻塞put/get,所以Queue提供了join_thread、cancel_join_thread、close函数来控制feeder的行为,close函数用来关闭feeder线程、join_thread用来join feeder线程,cancel_join_thread用来在控制在进程退出时,不自动join feeder线程,使用cancel_join_thread有可能导致部分数据没有被feeder写入Pipe而导致的数据丢失。

和threading.Queue不同的是,multiprocessing.Queue默认不支持join()和task_done操作,这两个支持需要使用mp.JoinableQueue对象。

SimpleQueue是一个简化的队列,去掉了Queue中的buffer,没有了使用Queue可能出现的问题,但是put和get方法都是阻塞的并且没有超时控制。

总结

通过对比可以发现,上述四种结构都实现了队列,但是用处却各有偏重,collections.deque在数据结构层面实现了队列,但是并没有应用场景方面的支持,可以看做是一个基础的数据结构。queue模块实现了面向多生产线程、多消费线程的队列,asyncio.queue模块则实现了面向多生产协程、多消费协程的队列,而multiprocessing.queue模块实现了面向多成产进程、多消费进程的队列。

以上所述是小编给大家介绍的Python中的四种队列,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对编程小技巧网站的支持!

您可能感兴趣的文章:

  • Python队列的定义与使用方法示例
  • Python算法应用实战之队列详解
  • Python 数据结构之队列的实现
  • 详解Python的collections模块中的deque双端队列结构
  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回
  • Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程
  • 利用Python学习RabbitMQ消息队列
  • 栈和队列数据结构的基本概念及其相关的Python实现

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读