dataframe设置两个条件取值的实例
发布时间:2020-12-16 20:58:57 所属栏目:Python 来源:网络整理
导读:如下所示: import pandas as pd import numpy as np from pandas import Series,DataFrame df = DataFrame({'name':['a','a','b','b'],'classes':[1,2,3,4],'price':[11,22,33,44]}) df classes name price0 1 a 111 2 a 222 3 b 333 4 b 44 根据index和col
如下所示: >>> import pandas as pd >>> import numpy as np >>> from pandas import Series,DataFrame >>> df = DataFrame({'name':['a','a','b','b'],'classes':[1,2,3,4],'price':[11,22,33,44]}) >>> df classes name price 0 1 a 11 1 2 a 22 2 3 b 33 3 4 b 44 >>> 根据index和columns取值 >>> s = df.loc[0,'price'] >>> s 11 根据同行的columns的值取同行的另一个columns的值 >>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price'] >>> sex 0 11 Name: price,dtype: int64 >>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price'].values[0] >>> sex 11 根据条件同时取得多个值 >>> name,price = df.loc[df.classes==1,('name','price')].values[0] >>> name 'a' >>> price 11 >>> 对一列赋值 >>> df.loc[:,'price']=0 >>> df classes name price 0 1 a 0 1 2 a 0 2 3 b 0 3 4 b 0 >>> 对df的一个列进行函数运算 【1】 >>> df['name'] = df['name'].apply(lambda x: x.upper()) >>> df classes name price 0 1 A 11 1 2 A 22 2 3 B 33 3 4 B 44 【2】 >>> df.loc[:,'name'] = df['name'].apply(lambda x: x.upper()) >>> df classes name price 0 1 A 11 1 2 A 22 2 3 B 33 3 4 B 44 >>> 对df的几个列进行函数运算 【1】 >>> df[['classes','price']] = df[['classes','price']].applymap(lambda x: str(x)) >>> print(type(df.loc[0,"classes"])) <class 'str'> >>> print(df.loc[0,"classes"]) 1 【2】 >>> df.loc[:,['classes','price']].applymap(lambda x: int(x)) >>> print(type(df.loc[0,"classes"])) <class 'int'> >>> print(df.loc[0,"classes"]) 1 >>> 对两个列进行去重 >>> df classes name price 0 1 a 11 1 1 a 22 2 3 b 33 3 4 b 44 >>> df.drop_duplicates(subset=['classes','name'],inplace=True) >>> df classes name price 0 1 a 11 2 3 b 33 3 4 b 44 多个条件分割字符串 >>> fund_memeber = '赵四、 王五' >>> fund_manager_list = re.split('[;, 、]',fund_memeber) >>> fund_manager_list ['赵四','','王五'] #DataFrame构造器 >>> df = DataFrame({'x':[1],'y':[2]}) >>> df x y 0 1 2 >>> 删除某列值为特定值得那一行 >>> df = DataFrame({'name':['a','c','d'],44]}) >>> df classes name price 0 1 a 11 1 2 b 22 2 3 c 33 3 4 d 44 【方法一】 >>> df = df.loc[df['name']!='a'] >>> df classes name price 1 2 b 22 2 3 c 33 3 4 d 44 >>> 【方法二】 df.drop(df[df.name=='a'].index,axis=0) #筛选df的每列值包含某个字段‘/a' >>> import pandas as pd >>> df = pd.DataFrame({'a':['A','B'],'b': ['AA','BB']}) >>> df a b 0 A AA 1 B BB >>> df[df['a'].str.contains(r'A')] a b 0 A AA >>> df = pd.DataFrame({'a':['/api/','BB']}) >>> df a b 0 /api/ AA 1 B BB >>> df[df['a'].str.contains(r'/api/')] a b 0 /api/ AA >>> 把列变成index和把index变成列 df request_url visit_times 9 fofeasy_产品基本信息 7 8 投顾挖掘 6 5 投顾挖掘 5 6 投顾挖掘 5 7 fofeasy_产品基本信息 5 3 fofeasy_产品基本信息 4 4 fofeasy_产品基本信息 4 2 投顾挖掘 2 0 行业数据――其他 1 1 行业数据――其他 1 x = df.set_index('request_url') x visit_times request_url fofeasy_产品基本信息 7 投顾挖掘 6 投顾挖掘 5 投顾挖掘 5 fofeasy_产品基本信息 5 fofeasy_产品基本信息 4 fofeasy_产品基本信息 4 投顾挖掘 2 行业数据――其他 1 行业数据――其他 1 x.reset_index('request_url') request_url visit_times 0 fofeasy_产品基本信息 7 1 投顾挖掘 6 2 投顾挖掘 5 3 投顾挖掘 5 4 fofeasy_产品基本信息 5 5 fofeasy_产品基本信息 4 6 fofeasy_产品基本信息 4 7 投顾挖掘 2 8 行业数据――其他 1 9 行业数据――其他 1 pandas 按照列A分组,将同一组的列B求和,生成新的Dataframe >>>df.groupby(by=['request_url'])['visit_times'].sum() >>> request_url fofeasy_产品基本信息 20 投顾挖掘 18 行业数据――其他 2 Name: visit_times,dtype: int64 dict变成dataframe In [15]: dict = pd.DataFrame({'x':1,'y':2},index=[0]) In [16]: dict Out[16]: x y 0 1 2 iloc In [69]: df1.iloc[1:5,2:4] Out[69]: 4 6 2 0.301624 -2.179861 4 1.462696 -1.743161 6 1.314232 0.690579 8 0.014871 3.357427 以上这篇dataframe设置两个条件取值的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持编程小技巧。 您可能感兴趣的文章:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |