加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

pandas数值计算与排序方法

发布时间:2020-12-16 20:57:27 所属栏目:Python 来源:网络整理
导读:以下代码是基于python3.5.0编写的 import pandasfood_info = pandas.read_csv("food_info.csv")# ---------------------特定列加减乘除-------------------------print(food_info["Iron_(mg)"])div_1000 = food_info["Iron_(mg)"] / 1000add_100 = food_info

以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ---------------------特定列加减乘除-------------------------
print(food_info["Iron_(mg)"])
div_1000 = food_info["Iron_(mg)"] / 1000
add_100 = food_info["Iron_(mg)"] + 100
sub_100 = food_info["Iron_(mg)"] - 100
mult_2 = food_info["Iron_(mg)"]*2
# ---------------------某两列相乘---------------------------
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
# ----------------------把某一列除1000,再添加新列----------------------------
iron_grams = food_info["Iron_(mg)"] / 1000
food_info["Iron_(g)"] = iron_grams
#-------------------Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))--------------
weighted_protein = food_info["Protein_(g)"] * 2
weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
#----------------------------数据归一化-----------------------------------
max_calories = food_info["Energ_Kcal"].max()              #找列最大值
normalized_calories = food_info["Energ_Kcal"] / max_calories
normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat
# -------------------------------排序----------------------------------
food_info.sort_values("Sodium_(mg)",inplace=True)           #升序,inplace=True表示不从建DataFrame
print(food_info["Sodium_(mg)"])
food_info.sort_values("Sodium_(mg)",inplace=True,ascending=False)  #降序,ascending=False表示降序
print(food_info["Sodium_(mg)"])

以上这篇pandas数值计算与排序方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持编程小技巧。

您可能感兴趣的文章:

  • Python科学计算之Pandas详解
  • python pandas 组内排序、单组排序、标号的实例
  • Python pandas常用函数详解
  • Python数据分析库pandas基本操作方法

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读