加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

pytorch构建网络模型的4种方法

发布时间:2020-12-16 20:56:39 所属栏目:Python 来源:网络整理
导读:利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层 首先导入几种方法用到的包: import torchimport torch.nn.functional as Ffrom collections

利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。

假设构建一个网络模型如下:

卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层

首先导入几种方法用到的包:

import torch
import torch.nn.functional as F
from collections import OrderedDict

第一种方法

# Method 1 -----------------------------------------

class Net1(torch.nn.Module):
  def __init__(self):
    super(Net1,self).__init__()
    self.conv1 = torch.nn.Conv2d(3,32,3,1,1)
    self.dense1 = torch.nn.Linear(32 * 3 * 3,128)
    self.dense2 = torch.nn.Linear(128,10)

  def forward(self,x):
    x = F.max_pool2d(F.relu(self.conv(x)),2)
    x = x.view(x.size(0),-1)
    x = F.relu(self.dense1(x))
    x = self.dense2(x)
    return x

print("Method 1:")
model1 = Net1()
print(model1)

这种方法比较常用,早期的教程通常就是使用这种方法。

第二种方法

# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
  def __init__(self):
    super(Net2,self).__init__()
    self.conv = torch.nn.Sequential(
      torch.nn.Conv2d(3,1),torch.nn.ReLU(),torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential(
      torch.nn.Linear(32 * 3 * 3,128),torch.nn.Linear(128,10)
    )

  def forward(self,x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0),-1)
    out = self.dense(res)
    return out

print("Method 2:")
model2 = Net2()
print(model2)

这种方法利用torch.nn.Sequential()容器进行快速搭建,模型的各层被顺序添加到容器中。缺点是每层的编号是默认的阿拉伯数字,不易区分。

第三种方法:

# Method 3 -------------------------------
class Net3(torch.nn.Module):
  def __init__(self):
    super(Net3,self).__init__()
    self.conv=torch.nn.Sequential()
    self.conv.add_module("conv1",torch.nn.Conv2d(3,1))
    self.conv.add_module("relu1",torch.nn.ReLU())
    self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential()
    self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3,128))
    self.dense.add_module("relu2",torch.nn.ReLU())
    self.dense.add_module("dense2",10))

  def forward(self,-1)
    out = self.dense(res)
    return out

print("Method 3:")
model3 = Net3()
print(model3)

这种方法是对第二种方法的改进:通过add_module()添加每一层,并且为每一层增加了一个单独的名字。 

第四种方法:

# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
  def __init__(self):
    super(Net4,self).__init__()
    self.conv = torch.nn.Sequential(
      OrderedDict(
        [
          ("conv1",1)),("relu1",torch.nn.ReLU()),("pool",torch.nn.MaxPool2d(2))
        ]
      ))

    self.dense = torch.nn.Sequential(
      OrderedDict([
        ("dense1",128)),("relu2",("dense2",10))
      ])
    )

  def forward(self,-1)
    out = self.dense(res)
    return out

print("Method 4:")
model4 = Net4()
print(model4)

是第三种方法的另外一种写法,通过字典的形式添加每一层,并且设置单独的层名称。

完整代码:

import torch
import torch.nn.functional as F
from collections import OrderedDict

# Method 1 -----------------------------------------

class Net1(torch.nn.Module):
  def __init__(self):
    super(Net1,-1)
    x = F.relu(self.dense1(x))
    x = self.dense2()
    return x

print("Method 1:")
model1 = Net1()
print(model1)


# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
  def __init__(self):
    super(Net2,-1)
    out = self.dense(res)
    return out

print("Method 2:")
model2 = Net2()
print(model2)


# Method 3 -------------------------------
class Net3(torch.nn.Module):
  def __init__(self):
    super(Net3,-1)
    out = self.dense(res)
    return out

print("Method 3:")
model3 = Net3()
print(model3)



# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
  def __init__(self):
    super(Net4,-1)
    out = self.dense(res)
    return out

print("Method 4:")
model4 = Net4()
print(model4)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。

您可能感兴趣的文章:

  • python构建深度神经网络(续)
  • python构建深度神经网络(DNN)
  • 使用Python构建Hopfield网络的教程

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读