Python中利用Scipy包的SIFT方法进行图片识别的实例教程
scipy 复制代码 代码如下: sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose 导入Numpy和这些scipy模块的标准方式是: import numpy as np from scipy import stats # 其它子模块相同 主scipy命名空间大多包含真正的numpy函数(尝试 scipy.cos 就是 np.cos)。这些仅仅是由于历史原因,通常没有理由在你的代码中使用import scipy。 使用图像匹配SIFT算法进行LOGO检测 其中 代码如下. #coding=utf-8 import cv2 import scipy as sp img1 = cv2.imread('x1.jpg',0) # queryImage img2 = cv2.imread('x2.jpg',0) # trainImage # Initiate SIFT detector sift = cv2.SIFT() # find the keypoints and descriptors with SIFT kp1,des1 = sift.detectAndCompute(img1,None) kp2,des2 = sift.detectAndCompute(img2,None) # FLANN parameters FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE,trees = 5) search_params = dict(checks=50) # or pass empty dictionary flann = cv2.FlannBasedMatcher(index_params,search_params) matches = flann.knnMatch(des1,des2,k=2) print 'matches...',len(matches) # Apply ratio test good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append(m) print 'good',len(good) # ##################################### # visualization h1,w1 = img1.shape[:2] h2,w2 = img2.shape[:2] view = sp.zeros((max(h1,h2),w1 + w2,3),sp.uint8) view[:h1,:w1,0] = img1 view[:h2,w1:,0] = img2 view[:,:,1] = view[:,0] view[:,2] = view[:,0] for m in good: # draw the keypoints # print m.queryIdx,m.trainIdx,m.distance color = tuple([sp.random.randint(0,255) for _ in xrange(3)]) #print 'kp1,kp2',kp1,kp2 cv2.line(view,(int(kp1[m.queryIdx].pt[0]),int(kp1[m.queryIdx].pt[1])),(int(kp2[m.trainIdx].pt[0] + w1),int(kp2[m.trainIdx].pt[1])),color) cv2.imshow("view",view) cv2.waitKey() (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |