加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Java > 正文

Elastic search performance testing finding

发布时间:2020-12-15 08:23:55 所属栏目:Java 来源:网络整理
导读:Setup 1 Node cluster on my local laptop: 8core,Xms=8G,Xmx=8G Indexing performance (Single index): 10 million payments,each one about 5KB,with batch size = 10000. Each batch takes roughly 2.5 s → 4 s,total time to index 10 million payment
Setup
1 Node cluster on my local laptop: 8core,Xms=8G,Xmx=8G

Indexing performance (Single index):
10 million payments,each one about 5KB,with batch size = 10000. Each batch takes roughly 2.5 s → 4 s,total time to index 10 million payment is around 50 min

Indexing performance (Multiple indices):
20 separate indices store totally 10 million payments. Indexing execution is slightly faster than single index case. Each batch takes roughly 1.7 s → 3.8 s,total time to index 10 million payment is around 38 min

Parameters required for bulk load operation
Elasticsearch config: http.max_content_length: 500mb

Client time out adjustment:

RestClient.builder(HttpHost("localhost",9200))
        .setRequestConfigCallback {
    it.apply {
        this.setConnectTimeout(5000)
        this.setSocketTimeout(60000)
    }
}.setMaxRetryTimeoutMillis(60000))

Initially batch size is set to 100000,elastic search server becomes unstable with high GC frequency,occupying a large percent of CPU time. So larger batch size does not always imply higher performance

Query aggregation performance:

Test query: real aggregation query used by rule engine

{
  "aggregations": {
    "date_range": {
      "range": {
        "field": "createdAt","ranges": [
          {
            "key": "LAST_7_DAYS","from": 1544400968485,"to": 1545005768486
          }
        ],"keyed": false
      },"aggregations": {
        "filter_aggregator": {
          "filters": {
            "filters": {
              "602c7d66-e990-4dfb-b6e2-72b62ff159d5": {
                "terms": {
                  "beneficiaryId.keyword": [
                    "602c7d66-e990-4dfb-b6e2-72b62ff159d5"
                  ],"boost": 1
                }
              },"67cab0c8-2510-443d-8f00-bce19c04815e": {
                "terms": {
                  "bankAccountUserId.keyword": [
                    "67cab0c8-2510-443d-8f00-bce19c04815e"
                  ],"8da52e51-eabf-4f6c-b9f0-e222933c1cb7": {
                "terms": {
                  "payerId.keyword": [
                    "8da52e51-eabf-4f6c-b9f0-e222933c1cb7"
                  ],"8da52e51-eabf-4f6c-b9f0-e222933c1cb7_602c7d66-e990-4dfb-b6e2-72b62ff159d5": {
                "bool": {
                  "filter": [
                    {
                      "terms": {
                        "payerId.keyword": [
                          "8da52e51-eabf-4f6c-b9f0-e222933c1cb7"
                        ],"boost": 1
                      }
                    },{
                      "terms": {
                        "beneficiaryId.keyword": [
                          "602c7d66-e990-4dfb-b6e2-72b62ff159d5"
                        ],"boost": 1
                      }
                    }
                  ],"adjust_pure_negative": true,"9a1b4bad-ccf5-4c67-8718-02696cb351e4": {
                "terms": {
                  "clientId.keyword": [
                    "9a1b4bad-ccf5-4c67-8718-02696cb351e4"
                  ],"9a1b4bad-ccf5-4c67-8718-02696cb351e4_602c7d66-e990-4dfb-b6e2-72b62ff159d5": {
                "bool": {
                  "filter": [
                    {
                      "terms": {
                        "clientId.keyword": [
                          "9a1b4bad-ccf5-4c67-8718-02696cb351e4"
                        ],"9a1b4bad-ccf5-4c67-8718-02696cb351e4_8da52e51-eabf-4f6c-b9f0-e222933c1cb7": {
                "bool": {
                  "filter": [
                    {
                      "terms": {
                        "clientId.keyword": [
                          "9a1b4bad-ccf5-4c67-8718-02696cb351e4"
                        ],{
                      "terms": {
                        "payerId.keyword": [
                          "8da52e51-eabf-4f6c-b9f0-e222933c1cb7"
                        ],"9a1b4bad-ccf5-4c67-8718-02696cb351e4_8da52e51-eabf-4f6c-b9f0-e222933c1cb7_602c7d66-e990-4dfb-b6e2-72b62ff159d5": {
                "bool": {
                  "filter": [
                    {
                      "terms": {
                        "clientId.keyword": [
                          "9a1b4bad-ccf5-4c67-8718-02696cb351e4"
                        ],"boost": 1
                }
              }
            },"other_bucket": false,"other_bucket_key": "_other_"
          },"aggregations": {
            "beneficiary_amount": {
              "stats": {
                "field": "beneficiaryAmountUsd"
              }
            },"payer_amount": {
              "stats": {
                "field": "payerAmountUsd"
              }
            },"distinct_count_beneficiary": {
              "cardinality": {
                "field": "beneficiaryId.keyword"
              }
            },"distinct_count_payer": {
              "cardinality": {
                "field": "payerId.keyword"
              }
            },"distinct_count_client": {
              "cardinality": {
                "field": "clientId.keyword"
              }
            },"distinct_count_bank_acc": {
              "cardinality": {
                "field": "bankAccountUserId.keyword"
              }
            },"distinct_count_bene_country": {
              "cardinality": {
                "field": "beneficiaryCountry.keyword"
              }
            },"distinct_count_payer_country": {
              "cardinality": {
                "field": "payerCountry.keyword"
              }
            },"distinct_count_bene_currency": {
              "cardinality": {
                "field": "beneficiaryCurrency.keyword"
              }
            },"distinct_count_payer_currency": {
              "cardinality": {
                "field": "payerCurrency.keyword"
              }
            },"structured_payment_amount_personal": {
              "range": {
                "field": "payerAmountUsd","ranges": [
                  {
                    "from": 9000,"to": 9999.999
                  }
                ],"keyed": false
              }
            },"structured_payment_amount_company": {
              "range": {
                "field": "payerAmountUsd","ranges": [
                  {
                    "from": 112500000,"to": 124999999.999
                  }
                ],"keyed": false
              }
            }
          }
        }
      }
    }
  }
}

Test result : (Single Index)

Scenario Number of run Execution times Min Max Average
Single thread<br/>Search result hit<br/>Result size unset<br/> 10 Text

Conclusion:
Aggregation performance hinges on the number of documents that matches the aggregation?

Result size parameter has significant impact on aggregation performance. not only because it skipped returning hit documents,but also because it enables caching for aggregation result,otherwise,you have to force result caching by explicitly setting?request_cache=true

https://www.elastic.co/guide/en/elasticsearch/reference/6.6/shard-request-cache.html

Executing query concurrently can also have negative impact on performance

Increasing number of indices have positive impact on index speed but have large negative impact on aggregation if the aggregation is performed across indices

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读