jdk8 HashMap初始化和扩容机制
发布时间:2020-12-15 07:40:02 所属栏目:Java 来源:网络整理
导读:工作中大家讨论HashMap设置初始化容量的问题,写篇文章好好聊聊。 一、jdk8 HashMap初始化和扩容机制 以下面的代码为例 MapString,String map = new HashMap(3);map.put("AA","AA");map.put("BB","BB");map.put("CC","CC");1.执行初始化方法 public HashMap(
工作中大家讨论HashMap设置初始化容量的问题,写篇文章好好聊聊。 一、jdk8 HashMap初始化和扩容机制以下面的代码为例 Map<String,String> map = new HashMap<>(3); map.put("AA","AA"); map.put("BB","BB"); map.put("CC","CC"); 1.执行初始化方法 public HashMap(int initialCapacity,float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } 此时:loadFactor = 0.75 // 这个方法返回大于输入参数且最接近的2的整数次幂的数 static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } 此时:threshold = 4 2.第一次执行put操作后 final V putVal(int hash,K key,V value,boolean onlyIfAbsent,boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n,i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash,key,value,null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this,tab,hash,value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash,null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab,hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } 第一put会进行resize()操作: final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap,newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this,newTab,j,oldCap); else { // preserve order Node<K,V> loHead = null,loTail = null; Node<K,V> hiHead = null,hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } 第一次put后:threshold = newCap * loadFactor = oldThr * loadFactor = 4 * 0.75 = 3 第二次put后:++size = 3,不进行扩容 第三次put后:++size = 4,进行扩容 oldCap = oldTab.length = 3 newcap = oldCap << 1 = 6 threshold = newThr = newCap * loadFactor = 6 * 0.75 = 4 结论:设置初始化容量n,初始化threshold = 大于n数且最接近的2的整数次幂的数 * 负载因子 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |