[Mathematics][MIT 18.02]Detailed discussions about 2-D and 3
Since it is just a sort of discussion,I will just give the formula and condition without proving them or leaving examples. General:
$displaystyle int_{C}vec{F}cdot mathrm{d}vec{r} = int_{C}Mmathrm{d}x+Nmathrm{d}y$,in which $vec{F} = <M,N>$ Method: Express $x$ and $y$ in a single variable (OR means parameterization).
Condition:$curl(vec{F}) = 0$ and $vec{F}$ is defined in a simple-connected region, in which $displaystyle curl(vec{F}) = N_{x} - M_{y}$ if $vec{F} = <M,N>$ AND $displaystyle curl(vec{F}) = nablatimesvec{F}$(namely$displaystyle begin{vmatrix}hat{i} & hat{j} & hat{k} frac{partial}{partial x} & frac{partial}{partial y} & frac{partial}{partial z} P & Q & Rend{vmatrix}) $,if $vec{F} = <P,Q,R>$ then $vec{F} = nabla f$,or $vec{F}$ is the partial derivative vector of some vector field. The method of finding the potential:Method 1. Do line integral.?Integral along the x-axis and y-axis and z-axis,if they exist. (Using path-independence) Method 2. Integral one component of $vec{F}$ and then differential it over another variable and compare. (...)
in the plane:$hat{n} = hat{T}$ rotated 90 degrees clockwise(standard) $=<mathrm{d}y,-mathrm{d}x>$ $displaystyle int_{C}vec{F}cdothat{n}mathrm{d}s = int_{C}Pmathrm{d}y-Qmathrm{d}x$,in which $vec{F} = <P,Q>$ in the space(or specifically,surface):Case 1. $displaystyle iint_{S}vec{F}cdothat{n}mathrm{d}S = iint_{S}vec{F}cdot(<-f_{x},-f_{y},1>mathrm{d}xmathrm{d}y)$,if we use $z = f(x,y)$ to describe the surface. Case 2. $displaystyle iint_{S}vec{F}cdothat{n}mathrm{d}S=iint_{S}vec{F}cdot(pmfrac{vec{N}}{vec{N}cdothat{k}}mathrm{d}xmathrm{d}y)$,if we are given the normal vector of the surface,or specifically,$g(x,y,z) = 0$ Addition(general case of the second): let‘s say $x = x(u,v)$ and $y = y(u,v)$ and $z = z(u,v)$ describe a surface,then we can get the $displaystyle hat{n}mathrm{d}S$ by changing $u$ and $v$ a little bit. Specifically,we begin at $displaystyle (x(u,v),y(u,z(u,v))$. By changing $u$ a little bit($Delta u$),then we arrive at $displaystyle (x(u+Delta u,y(u+Delta u,z(u+Delta u,v))$. Using linear approximation,we get $displaystyle (x(u,v) + x_{u}Delta u,v) + y_{u}Delta u,v) + z_{u}Delta u)$,so the difference is $displaystyle (x_{u}Delta u,y_{u}Delta u,z_{u}Delta u) = Delta u(x_{u},y_{u},z_{u})$,let‘s set it to be $vec{r_{1}}$. In the same way,we can get $displaystyle vec{r_{2}} = Delta v(x_{v},y_{v},z_{v})$ by changing $v$ a little bit. Thus we take the limits (meaning replace $Delta$ with $mathrm{d}$) and we can derive the corresponding $displaystyle hat{n}mathrm{d}S$ from it. So $displaystyle hat{n}mathrm{d}S = vec{r_{1}}timesvec{r_{2}} = <x_{u},z_{u}>times<x_{v},z_{v}>mathrm{d}umathrm{d}v$. (of course we can use position vector $displaystyle vec{r} = vec{r}(u,v) = <x,z>$ to simplify the problem,namely $displaystyle frac{partial vec{r}}{partial u}mathrm{d}u$ is the $vec{r_{1}}$) Association:Work(line integral):
$displaystyle oint_{C}vec{F}cdotmathrm{d}vec{r} = iint_{R}curl(vec{F})mathrm{d}A$
$displaystyle oint_{C}vec{F}cdotmathrm{d}vec{r} = iint_{S}curl(vec{F})hat{n}mathrm{d}S$,in which $S$ means any surface bounded by this curve and $curl(vec{F})=nablatimesvec{F}$. Flux:
$displaystyle oint_{C}vec{F}cdothat{n}mathrm{d}s = iint_{R}div(vec{F})mathrm{d}A$,Q>$ and $div(vec{F}) = P_{x} + Q_{y}$.
$displaystyleoiint_{S}vec{F}cdothat{n}mathrm{d}S = iiint_{R}div(vec{F})mathrm{d}V$,R>$ and $div(vec{F}) = P_{x} + Q_{y} + R_{z}$,in which the direction of $hat{n}$ is determined by the right-hand rule. (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |