加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Java > 正文

神经网络 – 基于Java的神经网络 – 如何实现反向传播

发布时间:2020-12-15 02:24:57 所属栏目:Java 来源:网络整理
导读:我正在建立一个测试神经网络,它绝对不起作用.我的主要问题是反向传播.根据我的研究,我知道使用sigmoid函数很容易.因此,我通过(1-Output)(输出)(目标 – 输出)更新每个权重,但问题是如果我的输出为1但我的目标不是?如果它在某个时刻是一个,则权重更新将始终
我正在建立一个测试神经网络,它绝对不起作用.我的主要问题是反向传播.根据我的研究,我知道使用sigmoid函数很容易.因此,我通过(1-Output)(输出)(目标 – 输出)更新每个权重,但问题是如果我的输出为1但我的目标不是?如果它在某个时刻是一个,则权重更新将始终为0 …现在我只是想尝试添加来自2个输入神经元的输入,因此最佳权重应该只是1作为输出神经元只需添加其输入.我确定我在很多地方搞砸了这个但是这里是我的代码:

public class Main {

        public static void main(String[] args) {
            Double[] inputs = {1.0,2.0};
            ArrayList<Double> answers = new ArrayList<Double>();
            answers.add(3.0);

            net myNeuralNet = new net(2,1,answers);

            for(int i=0; i<200; i++){

                myNeuralNet.setInputs(inputs);
                myNeuralNet.start();
                myNeuralNet.backpropagation();
                myNeuralNet.printOutput();
                System.out.println("*****");
                for(int j=0; j<myNeuralNet.getOutputs().size(); j++){
                    myNeuralNet.getOutputs().get(j).resetInput();
                    myNeuralNet.getOutputs().get(j).resetOutput();
                    myNeuralNet.getOutputs().get(j).resetNumCalled();
                }
            }
        }

    }


    package myneuralnet;
    import java.util.ArrayList;

    public class net {

    private ArrayList<neuron> inputLayer;
    private ArrayList<neuron> outputLayer;
    private ArrayList<Double> answers;

    public net(Integer numInput,Integer numOut,ArrayList<Double> answers){
        inputLayer = new ArrayList<neuron>();
        outputLayer = new ArrayList<neuron>();
        this.answers = answers;

        for(int i=0; i<numOut; i++){
            outputLayer.add(new neuron(true));
        }

        for(int i=0; i<numInput; i++){
            ArrayList<Double> randomWeights = createRandomWeights(numInput);
            inputLayer.add(new neuron(outputLayer,randomWeights,-100.00,true));
        }

        for(int i=0; i<numOut; i++){
            outputLayer.get(i).setBackConn(inputLayer);
        }
    }

    public ArrayList<neuron> getOutputs(){
        return outputLayer;
    }

    public void backpropagation(){
        for(int i=0; i<answers.size(); i++){
            neuron iOut = outputLayer.get(i);
            ArrayList<neuron> iOutBack = iOut.getBackConn();
            Double iSigDeriv = (1-iOut.getOutput())*iOut.getOutput();
            Double iError = (answers.get(i) - iOut.getOutput());

            System.out.println("Answer: "+answers.get(i) + " iOut: "+iOut.getOutput()+" Error: "+iError+" Sigmoid: "+iSigDeriv);

            for(int j=0; j<iOutBack.size(); j++){
                neuron jNeuron = iOutBack.get(j);
                Double ijWeight = jNeuron.getWeight(i);

                System.out.println("ijWeight: "+ijWeight);
                System.out.println("jNeuronOut: "+jNeuron.getOutput());

                jNeuron.setWeight(i,ijWeight+(iSigDeriv*iError*jNeuron.getOutput()));
            }
        }

        for(int i=0; i<inputLayer.size(); i++){
            inputLayer.get(i).resetInput();
            inputLayer.get(i).resetOutput();
        }
    }

    public ArrayList<Double> createRandomWeights(Integer size){
        ArrayList<Double> iWeight = new ArrayList<Double>();

        for(int i=0; i<size; i++){
            Double randNum = (2*Math.random())-1;
            iWeight.add(randNum);
        }

        return iWeight;
    }

    public void setInputs(Double[] is){
        for(int i=0; i<is.length; i++){
            inputLayer.get(i).setInput(is[i]);
        }
        for(int i=0; i<outputLayer.size(); i++){
            outputLayer.get(i).resetInput();
        }
    }

    public void start(){
        for(int i=0; i<inputLayer.size(); i++){
            inputLayer.get(i).fire();
        }
    }

    public void printOutput(){
        for(int i=0; i<outputLayer.size(); i++){
            System.out.println(outputLayer.get(i).getOutput().toString());
        }
    }

}

package myneuralnet;
import java.util.ArrayList;

public class neuron {

    private ArrayList<neuron> connections;
    private ArrayList<neuron> backconns;
    private ArrayList<Double> weights;
    private Double threshold;
    private Double input;
    private Boolean isOutput = false;
    private Boolean isInput = false;
    private Double totalSignal;
    private Integer numCalled;
    private Double myOutput;

    public neuron(ArrayList<neuron> conns,ArrayList<Double> weights,Double threshold){
        this.connections = conns;
        this.weights = weights;
        this.threshold = threshold;
        this.totalSignal = 0.00;
        this.numCalled = 0;
        this.backconns = new ArrayList<neuron>();
        this.input = 0.00;
    }

    public neuron(ArrayList<neuron> conns,Double threshold,Boolean isin){
        this.connections = conns;
        this.weights = weights;
        this.threshold = threshold;
        this.totalSignal = 0.00;
        this.numCalled = 0;
        this.backconns = new ArrayList<neuron>();
        this.input = 0.00;
        this.isInput = isin;
    }

    public neuron(Boolean tf){
        this.connections = new ArrayList<neuron>();
        this.weights = new ArrayList<Double>();
        this.threshold = 0.00;
        this.totalSignal = 0.00;
        this.numCalled = 0;
        this.isOutput = tf;
        this.backconns = new ArrayList<neuron>();
        this.input = 0.00;
    }

    public void setInput(Double input){
        this.input = input;
    }

    public void setOut(Boolean tf){
        this.isOutput = tf;
    }

    public void resetNumCalled(){
        numCalled = 0;
    }

    public void setBackConn(ArrayList<neuron> backs){
        this.backconns = backs;
    }

    public Double getOutput(){
        return myOutput;
    }

    public Double getInput(){
        return totalSignal;
    }

    public Double getRealInput(){
        return input;
    }

    public ArrayList<Double> getWeights(){
        return weights;
    }

    public ArrayList<neuron> getBackConn(){
        return backconns;
    }

    public Double getWeight(Integer i){
        return weights.get(i);
    }

    public void setWeight(Integer i,Double d){
        weights.set(i,d);
    }

    public void setOutput(Double d){
        myOutput = d;
    }

    public void activation(Double myInput){
        numCalled++;
        totalSignal += myInput;

        if(numCalled==backconns.size() && isOutput){
            System.out.println("Total Sig: "+totalSignal);
            setInput(totalSignal);
            setOutput(totalSignal);
        }
    }

    public void activation(){
        Double activationValue = 1 / (1 + Math.exp(input));
        setInput(activationValue);
        fire();
    }

    public void fire(){
        for(int i=0; i<connections.size(); i++){
            Double iWeight = weights.get(i);
            neuron iConn = connections.get(i);
            myOutput = (1/(1+(Math.exp(-input))))*iWeight;
            iConn.activation(myOutput);
        }
    }

    public void resetInput(){
        input = 0.00;
        totalSignal = 0.00;
    }

    public void resetOutput(){
        myOutput = 0.00;
    }
}

好的,所以这是很多代码所以请允许我解释.网络现在很简单,只是一个输入层和一个输出层—我想稍后添加一个隐藏层,但我现在正在采取婴儿步骤.每层都是神经元的arraylist.输入神经元加载了输入,在本例中为1和a 2.这些神经元触发,它计算输入和输出到输出神经元的sigmoid,它将它们相加并存储该值.然后通过采用(应答输出)(输出)(1-输出)(特定输入神经元的输出)来反向传播,并相应地更新权重.很多时候,它循环通过,我得到无穷大,这似乎与负重量或sigmoid相关.当没有发生时,它会收敛到1,因为(1的1输出)是0,我的权重停止更新.

numCalled和totalSignal值恰好是算法在继续之前等待所有神经元输入.我知道我这样做很奇怪,但是神经元类有一个神经元的神经元,称为连接,用于保持它向前连接的神经元.另一个名为backconns的arraylist持有反向连接.我应该更新正确的权重,因为我得到神经元i和j之间的所有反向连接但是所有神经元j(上面的层)我只是拉力量i.我为这种混乱道歉 – 我现在几个小时都在尝试很多事情,但仍然无法理解.任何帮助是极大的赞赏!

解决方法

关于神经网络的一些最好的教科书一般是Chris Bishop和Simon Haykin的.尝试阅读关于backprop的章节并理解为什么权重更新规则中的术语是它们的方式.我要求你这样做的原因是backprop比起初看起来更微妙.如果您对输出图层使用线性激活函数,事情会发生一些变化(想想您可能想要这样做的原因.提示:后处理),或者如果添加隐藏图层.当我真正阅读这本书时,它变得更加清晰.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读