加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长学院 > PHP教程 > 正文

动态规划算法--蛮力算法求最大子段和

发布时间:2020-12-13 21:10:59 所属栏目:PHP教程 来源:网络整理
导读:问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1=i=j=n 例如,当(a[1],a[4],a[5],a[6]
问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n 例如,当(a[1],a[4],a[5],a[6])=(⑵,11,⑷,13,⑸,⑵)时,最大子段和为20。
最大子段和是动态计划中的1种。
当b[j⑴]>0时b[j]=b[j⑴]+a[j],否则b[j]=a[j]。故b[j]的动态计划递归式为:
b[j]=max(b[j⑴]+a[j],a[j]),1<=j<=n。
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #define NR(x) sizeof(x)/sizeof(x[0]) int MaxSum(int a[],int n) { int sum = 0 ; int b = 0 ; int i ; for(i = 1 ; i < n ; i++) { if(b > 0) b = b + a[i] ; else b = a[i] ; if(b > sum) sum = b ; } return sum ; } int main(void) { int sum ; int buf[] = { ⑵,⑵}; sum = MaxSum(buf,NR(buf)) ; printf("%dn",sum); return 0 ; }


(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读