加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长学院 > PHP教程 > 正文

Hdoj 1588 Gauss Fibonacci 【矩阵快速幂】

发布时间:2020-12-13 20:44:03 所属栏目:PHP教程 来源:网络整理
导读:Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2584 Accepted Submission(s): 1078 Problem Description Without expecting,Angel replied quickly.She says: “I’v heard that

Gauss Fibonacci

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2584 Accepted Submission(s): 1078

Problem Description
Without expecting,Angel replied quickly.She says: “I’v heard that you’r a very clever boy. So if you wanna me be your GF,you should solve the problem called GF~. ”
How good an opportunity that Gardon can not give up! The “Problem GF” told by Angel is actually “Gauss Fibonacci”.
As we know,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly,and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n⑴)+f(n⑵) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n,calculate the sum of every f(g(i)) for 0<=i

#include <cstdio> #include <iostream> #include <cstring> using namespace std; #define LL __int64 struct node{ LL num[3][3]; }; node e,a; LL n,m,k,b; node mul(node aa,node bb){ node c; for(int i = 1; i < 3; ++i){ for(int j = 1; j < 3; ++j){ c.num[i][j] = 0; for(int k = 1; k < 3; ++k){ c.num[i][j] = (c.num[i][j]+aa.num[i][k]*bb.num[k][j])%m; } } } return c; } node fa(node a,LL n){ node b = e; while(n){ if(n&1) b = mul(a,b); n >>= 1; a = mul(a,a); } return b; } node add(node aa,node bb){ node c; for(int i = 1; i < 3; ++i){ for(int j = 1; j < 3; ++j){ c.num[i][j] = (aa.num[i][j]+bb.num[i][j])%m; } } return c; } node dg(node p,LL k){ //这里很巧 if(k == 1) return p; else if(k&1) return add(dg(p,k-1),fa(p,k)); //这里就是A^(K⑴)+A^k else return mul(dg(p,k>>1),add(fa(p,e));//这里就是 A^k+A^(k>>1); } int main(){ e.num[1][1] = e.num[2][2] = 1; e.num[1][2] = e.num[2][1] = 0; a.num[1][1] = a.num[1][2] = a.num[2][1] = 1; a.num[2][2] = 0; while(cin >> k >> b >> n >> m){ node ak = fa(a,k); node ab = fa(a,b); node ans = dg(ak,n-1); ans = add(e,ans); ans = mul(ab,ans); cout << ans.num[1][2]<< endl; } return 0; }

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读