C++实现常用的平面计算几何问题求解
发布时间:2020-12-13 20:12:48 所属栏目:PHP教程 来源:网络整理
导读:通过封装经常使用的点、线段类型,并提供点、线间的相互关系运算,为计算几何工具库的编写提供基础框架。 代码以下:(代码正确性仍需测试,谨慎使用) //参考//http://dev.gameres.com/Program/Abstract/Geometry.htm//http://zhan.renren.com/jisuanjihe?f
通过封装经常使用的点、线段类型,并提供点、线间的相互关系运算,为计算几何工具库的编写提供基础框架。 代码以下:(代码正确性仍需测试,谨慎使用) //参考
//http://dev.gameres.com/Program/Abstract/Geometry.htm
//http://zhan.renren.com/jisuanjihe?from=template&checked=true
/*
toolbox: Geometry algorithm toolbox
author: alaclp
email: alaclp@qq.com
publish date: 2015⑴⑴6
*/
#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
//预定义
#define Min(x,y) ((x) < (y) ? (x) : (y))
#define Max(x,y) ((x) > (y) ? (x) : (y))
//点对象
typedef struct Point {
double x,y;
//构造函数
Point(double x,double y) : x(x),y(y) {}
//无参数时的构造函数
Point() : x(0),y(0) {}
//获得到点pt的距离
double distance(const Point& pt) {
return sqrt( (x - pt.x) * (x - pt.x) + (y - pt.y) * (y - pt.y));
}
//判断两点是不是同1个点
bool equal(const Point& pt) {
return ((x - pt.x) == 0) && (y - pt.y == 0);
}
} Point;
//线段对象
typedef struct PartLine {
Point pa,pb;
double length;
PartLine() {
length = 0;
}
//构造函数
PartLine(Point pa,Point pb) : pa(pa),pb(pb) {
length = sqrt((pa.x - pb.x) * (pa.x - pb.x) + (pa.y - pb.y) * (pa.y - pb.y));
}
void assign(const PartLine& pl) {
pa = pl.pa;
pb = pl.pb;
length = pl.length;
}
//利用叉积计算点到线段的垂直距离
//注意:此结果距离有正负之分
//若pc点在线段的逆时针方向,则距离为正;否则,距离为副值
double getDistantToPoint(Point pc) {
double area = crossProd(pc) / 2;
return area * 2 / length;
/* 利用海伦公式计算
PartLine pl1(this->pa,pc),pl2(this->pb,pc);
double l1 = this->length,l2 = pl1.length,l3 = pl2.length;
double s = (l1 + l2 + l3) / 2; //海伦公式
double area = sqrt(s * (s - l1) * (s - l2) * (s - l3));
return area * 2 / l1;
*/
}
//向量的叉积
/* 计算向量的叉积(ABxAC A(x1,y1) B(x2,y2) C(x3,y3))是计算行列式
| x1-x0 y1-y0 |
| x2-x0 y2-y0 |
的结果(向量的叉积 AB X AC)
*/
//计算AB与AC的叉积---叉积的绝对值是两向量所构成平行4边形的面积
double crossProd(Point& pc) {
//计算ab X ac
return (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
}
//判断两线段是不是相交
bool isIntersected(PartLine& pl) {
double d1,d2,d3,d4,d5,d6;
d1 = pl.crossProd(pb);
d2 = pl.crossProd(pa);
d3 = crossProd(pl.pa);
d4 = crossProd(pl.pb);
d5 = crossProd(pl.pa);
d6 = crossProd(pl.pb);
//printf("%f %f %f %f %f %f
",d1,d6);
bool cond1 = d1 * d2 <= 0,//pb和pa在pl的两侧或线段或线段的延长线上
cond2 = d3 * d4 <= 0,//pl.pa和pl.pb在this的两侧或线段或线段的延长线上
cond3 = d5 != 0,//pl.pa不在线段和延长线上
cond4 = d6 != 0; //pl.pb不在线段和延长线上
return cond1 && cond2 && cond3 && cond4;
}
//判断两线段是不是平行
bool isParallel(PartLine& pl) {
double v1 = crossProd(pl.pa),v2 = crossProd(pl.pb);
return (v1 == v2) && (v1 != 0);
}
//沿pa点旋转theta
PartLine rotateA(double theta) {
float nx = pa.x +(pb.x - pa.x) * cos(theta) - (pb.y - pa.y) * sin(theta),ny = pa.y + (pb.x - pa.x) * sin(theta) + (pb.y - pa.y) * cos(theta);
return PartLine(pa,Point(nx,ny));
}
//沿pb点旋转theta
PartLine rotateB(double theta) {
float nx = pb.x +(pa.x - pb.x) * cos(theta) - (pa.y - pb.y) * sin(theta),ny = pb.y + (pa.x - pb.x) * sin(theta) + (pa.y - pb.y) * cos(theta);
return PartLine(Point(nx,ny),pb);
}
//判断两线段是不是堆叠或共线
bool inSameLine(PartLine& pl) {
double v1 = crossProd(pl.pa),v2 = crossProd(pl.pb);
if (v1 != v2) return false;
if (v1 != 0) return false;
return true;
}
//获得两线段的相交点---如果不相交返回valid=false
//如果多个交点,给出正告
Point getCrossPoint(PartLine& pl,bool& valid) {
valid = false;
if (!isIntersected(pl)) { //不相交
return Point();
}
if ( inSameLine(pl) ) { //有交点且共线
if ( pa.equal(pl.pa) ) { valid = true; return pa; }
if ( pa.equal(pl.pb) ) { valid = true; return pa; }
if ( pb.equal(pl.pa) ) { valid = true; return pb; }
if ( pb.equal(pl.pb) ) { valid = true; return pb; }
//多个焦点
cout << "毛病:计算交点结果数量为无穷" << endl;
valid = false;
return Point();
}
//相交
Point pt1,pt2,pt3,result;
pt1 = pa;
pt2 = pb;
pt3.x = (pt1.x + pt2.x) / 2;
pt3.y = (pt1.y + pt2.y) / 2;
double L1 = pl.crossProd(pt1),L2 = pl.crossProd(pt2),L3 = pl.crossProd(pt3);
printf("%f %f %f=%f
",L1,L2,L3,L1 + L2);
while(fabs(L1) > 1e⑺ || fabs(L2) > 1e⑺) {
valid = true;
if (fabs(L1) < fabs(L2))
pt2 = pt3;
else
pt1 = pt3;
pt3.x = (pt1.x + pt2.x) / 2;
pt3.y = (pt1.y + pt2.y) / 2;
result = pt3;
L1 = pl.crossProd(pt1),L3 = pl.crossProd(pt3);
printf("%f %f %f=%f
",L1 - L2);
}
return pt3;
}
//获得线段上离pt最近的点
Point getNearestPointToPoint(Point& pt) {
Point pt1,result;
pt1 = pa;
pt2 = pb;
pt3.x = (pt1.x + pt2.x) / 2;
pt3.y = (pt1.y + pt2.y) / 2;
double L1 = pt1.distance(pt),L2 = pt2.distance(pt),L3 = pt3.distance(pt);
if (L1 == L2) return pt3;
while(fabs(L1 - L2) > 1e⑺) {
if (L1 < L2)
pt2 = pt3;
else
pt1 = pt3;
pt3.x = (pt1.x + pt2.x) / 2;
pt3.y = (pt1.y + pt2.y) / 2;
result = pt3;
L1 = pt1.distance(pt);
L2 = pt2.distance(pt);
L3 = pt3.distance(pt);
//printf("%f %f %f=%f
",L1 - L2);
}
return result;
}
//获得1个点在线段上的镜像点
Point getMirrorPoint(Point& pc) {
}
} PartLine;
int main(void)
{
Point p1(0,0),p2(1,1),p3(0,1.1),p4(0.5,0.5+1e⑴0),p5(0.5,0.5⑴e⑴0),np;
PartLine pl1(p1,p2),pl2(p3,p4),pl3(p3,p5);
cout << pl1.getDistantToPoint(p3) << endl;
cout << "线段1和2相交?" << pl1.isIntersected(pl2) << endl;
np = pl1.getNearestPointToPoint(p5);
cout << "最近点:" << np.x << "," << np.y << endl;
bool isvalid;
np = pl1.getCrossPoint(pl3,isvalid);
cout << "两线段的相交点:" << (isvalid ? "有效":"无效") << "=" << np.x << "," << np.y << endl;
PartLine plx = pl1.rotateA(M_PI / 2);
printf("旋转90度后:%f %f %f %f
",plx.pa.x,plx.pa.y,plx.pb.x,plx.pb.y);
return 0;
}
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |