迪菲-赫尔曼密钥交换(Diffie–Hellman)算法原理和PHP实现版
迪菲-赫尔曼(Diffie–Hellman)是一个可以让双方在不安全的公共信道上建立秘钥的一种算法,双方后期就可以利用这个秘钥加密(如RC4)内容。 迪菲-赫尔曼(Diffie–Hellman)算法原理很简单: 如上原理,最后很容易通过数学原理证明(g^b%p)^a%p = (g^a%p)^b%p,因此它们得到一个相同的密钥。 上面除了a,b和最后得出的公共密钥是秘密的,其它都是可以在公共信道上传递。实际运用中p很大(300位以上),g通常取2或5。那么几乎不可能从p,g和g^a%p算出a(离散数学问题)。 很多语言都对该算法做了实现,以PHP package中Crypt_DiffieHellman为例: /*
$p = 563; $bob = new Crypt_DiffieHellman($p,14); $alice_computeKey = $alice->computeSecretKey($bob_pubKey)->getSharedSecretKey(); echo "{$alice_pubKey}-{$bob_pubKey}-{$alice_computeKey}-{$bob_computeKey}"; //78-534-117-117 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |