MYSQL教程美团网技术团队分享的MySQL索引及慢查询优化教程
《MYSQL教程美团网技术团队分享的MySQL索引及慢查询优化教程》要点: MySQL凭借着出色的性能、低廉的成本、丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位描述上看到诸如“精通MySQL”、“SQL语句优化”、“了解数据库原理”等要求.我们知道一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,所以查询语句的优化显然是重中之重. 一个慢查询引发的思考 select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2; 系统使用者反应有一个功能越来越慢,于是工程师找到了上面的SQL. MySQL索引原理 索引原理 磁盘IO与预读 考虑到磁盘IO是非常昂扬的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到.每一次IO读取的数据我们称之为一页(page).具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助.MYSQL数据库 索引的数据结构 详解b+树 如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块.真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99.非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中.MYSQL数据库 b+树的查找过程 b+树性质 慢查询优化 建索引的几大原则 create_time = unix_timestamp('2014-05-29'); 5.尽量的扩展索引,不要新建索引.比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可MYSQL数据库 回到开始的慢查询 select * from task where status = 0 and type = 12 limit 10; select count(*) from task where status = 0 ; 那么索引建立成(status,type,operator_id,operate_time)就是非常正确的,因为可以覆盖到所有情况.这个就是利用了索引的最左匹配的原则MYSQL数据库 查询优化神器 - explain命令 慢查询优化基本步骤 几个慢查询案例 复杂语句写法 select distinct cert.emp_id from cm_log cl inner join ( select emp.id as emp_id,emp_cert.id as cert_id from employee emp left join emp_certificate emp_cert on emp.id = emp_cert.emp_id where emp.is_deleted=0 ) cert on ( cl.ref_table='Employee' and cl.ref_oid= cert.emp_id ) or ( cl.ref_table='EmpCertificate' and cl.ref_oid= cert.cert_id ) where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00'; 0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢MYSQL数据库 53 rows in set (1.87 sec) 1.explainMYSQL数据库 +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer | | 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where | | 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ 简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID.derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录.我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高.获得后,再和cm_log的379条记录根据规则关联.从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录. select emp.id from cm_log cl inner join employee emp on cl.ref_table = 'Employee' and cl.ref_oid = emp.id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 union select emp.id from cm_log cl inner join emp_certificate ec on cl.ref_table = 'EmpCertificate' and cl.ref_oid = ec.id inner join employee emp on emp.id = ec.emp_id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 2.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致MYSQL数据库 3.现有索引可以满足,不需要建索引MYSQL数据库 4.用改造后的语句实验一下,只需要10ms 降低了近200倍!MYSQL数据库 +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ 53 rows in set (0.01 sec) 明确应用场景 select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 ); 0.先看看运行多长时间,951条数据6.22秒,真的很慢MYSQL数据库 951 rows in set (6.22 sec) 1.先explain,rows达到了361万,type = ALL表明是全表扫描MYSQL数据库 +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ 2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条MYSQL数据库 3.让explain的rows 尽量逼近951MYSQL数据库 看一下accurate_result = 1的记录数MYSQL数据库 select count(*),accurate_result from stage_poi group by accurate_result; +----------+-----------------+ | count(*) | accurate_result | +----------+-----------------+ | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +----------+-----------------+ 我们看到accurate_result这个字段的区分度非常低,整个表只有-1,1三个值,加上索引也无法锁定特别少量的数据MYSQL数据库 再看一下sync_status字段的情况MYSQL数据库 select count(*),sync_status from stage_poi group by sync_status; +----------+-------------+ | count(*) | sync_status | +----------+-------------+ | 3080 | 0 | | 3085413 | 3 | +----------+-------------+ 同样的区分度也很低,根据理论,也不适合建立索引MYSQL数据库 问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的MYSQL数据库 4.找业务方去沟通,看看使用场景.业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右.了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据MYSQL数据库 5.根据建立索引规则,使用如下语句建立索引MYSQL数据库 alter table stage_poi add index idx_acc_status(accurate_result,sync_status); 6.观察预期结果,发现只需要200ms,快了30多倍.MYSQL数据库 952 rows in set (0.20 sec) 我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段按照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句.所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句.MYSQL数据库 无法优化的语句 select c.id,c.name,c.position,c.sex,c.phone,c.office_phone,c.feature_info,c.birthday,c.creator_id,c.is_keyperson,c.giveup_reason,c.status,c.data_source,from_unixtime(c.created_time) as created_time,from_unixtime(c.last_modified) as last_modified,c.last_modified_user_id from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1,2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 order by c.created_time desc limit 0,10; 还是几个步骤 10 rows in set (13.06 sec) 1.explainMYSQL数据库 +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ 从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表. select count(*) from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1,2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 +----------+ | count(*) | +----------+ | 778878 | +----------+ 1 row in set (5.19 sec) 发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢? select c.id,c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1,2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0,10; 验证一下效果 预计在1ms内,提升了13000多倍! ```sql 10 rows in set (0.00 sec) 本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表! select sql_no_cache c.id,c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1,2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 2875 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0,10; Empty set (2 min 18.99 sec) 2 min 18.99 sec!比之前的情况还糟糕很多.由于mysql的nested loop机制,遇到这种情况,基本是无法优化的.这条语句最终也只能交给应用系统去优化自己的逻辑了. 慢查询的案例就分析到这儿,以上只是一些比较典型的案例.我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死.再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了.MYSQL数据库 写在后面的话 编程之家PHP培训学院每天发布《MYSQL教程美团网技术团队分享的MySQL索引及慢查询优化教程》等实战技能,PHP、MYSQL、LINUX、APP、JS,CSS全面培养人才。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |