golang 标准库间依赖的可视化展示
简介国庆看完 << Go 语言圣经 >>,总想做点什么,来加深下印象.以可视化的方式展示 golang 标准库之间的依赖,可能是一个比较好的切入点.做之前,简单搜了下相关的内容,网上也要讨论,但是没有发现直接能拿过来用的.标准库之间,是必然存在依赖关系的,不同库被依赖的程度必然是不一样的.但究竟有多大差别呢? 以下内容,数据源自真实环境的 golang 1.9 版本的标准库.所以,本文不仅是一篇可视化相关的讨论文章,更是提供了一个可以直接探究 golang 标准库间依赖关系的快速梳理工具. 数据准备标准库各个包之间的相互关系,可以直接通过命令获取,然后简单变换为一个标准的 JSON 对象: go list -json std
示例输出: {
"Dir": "/usr/local/go/src/archive/tar","ImportPath": "archive/tar","Name": "tar","Doc": "Package tar implements access to tar archives.","Target": "/usr/local/go/pkg/darwin_amd64/archive/tar.a","Goroot": true,"Standard": true,"StaleReason": "standard package in Go release distribution","Root": "/usr/local/go","GoFiles": [ "common.go","format.go","reader.go","stat_atimespec.go","stat_unix.go","strconv.go","writer.go" ],"IgnoredGoFiles": [ "stat_atim.go" ],"Imports": [ "bytes","errors","fmt","io","io/ioutil","math","os","path","sort","strconv","strings","syscall","time" ],"Deps": [ "bytes","internal/cpu","internal/poll","internal/race","path/filepath","reflect","runtime","runtime/internal/atomic","runtime/internal/sys","sync","sync/atomic","time","unicode","unicode/utf8","unsafe" ],"TestGoFiles": [ "reader_test.go","strconv_test.go","tar_test.go","writer_test.go" ],"TestImports": [ "bytes","crypto/md5","internal/testenv","testing","testing/iotest","XTestGoFiles": [ "example_test.go" ],"XTestImports": [ "archive/tar","bytes","log","os" ] }
梳理过的数据源,参见: https://raw.githubusercontent.com/ios122/graph-go/master/data.js 可视化原理主要涉及一下内容:
数据整理就是把原始数据,处理成 echarts 需要的数据,这里简要说下最核心的思路:
/* 将原始数据,转换为图标友好的数据. ImportPath 作为唯一 id 和 标签; Imports 用于计算依赖关系; 节点的大小,取决于被依赖的次数; */
function transData(datas){
/* 存储依赖路径信息. */
let edges = []
/* 存储基础节点信息. */
let nodes = []
/* 节点尺寸.初始是1,每被引入一次再加1. */
let nodedSize = {}
/* 尺寸单位1. */
let unitSize = 1.5
datas.map((data)=>{
let itemId = data.ImportPath
nodes.push({
"label": itemId,"attributes": {},"id": itemId,"size": 1
})
if(data.Imports){
data.Imports.map((importItem)=>{
edges.push({
"sourceID": importItem,"targetID": itemId,"size": unitSize
})
if(nodedSize[importItem]){
nodedSize[importItem] = nodedSize[importItem] + unitSize
}else{
nodedSize[importItem] = unitSize
}
})
}
})
/* 尺寸数据合并到节点上. */
nodes.map((item)=>{
let itemId = item.id
if(nodedSize[itemId]){
item.size = nodedSize[itemId]
}
})
return {
nodes,edges
}
}
效果与源码
相关链接
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |