Go语言接口内部实现
前几节我们介绍了接口的基本概念和用法,定义接口只需简单声明一个方法集合即可,定义新类型时不需要显式地声明要实现的接口,接口的使用也很简单。 那么接口的底层是如何实现的呢?如何实现动态调用的呢?接口的动态调用到底有多大的额外开销?本节我们就来深入讲解一下接口的底层实现。 阅读本节需要读者了解Go语言接口的基础知识和Go语言汇编基础和函数调用规约,以及对 ELF 可执行文件格式有基本了解。本节内容有点偏底层,有一定的难度,如果阅读起来有困难,可以先跳过去,有时间再慢慢读。 数据结构从前面章节了解到,接口变量必须初始化才有意义,没有初始化的接口变量的默认值是 nil,没有任何意义。具体类型实例传递给接口称为接口的实例化。在接口的实例化的过程中,编译器通过特定的数据结构描述这个过程。首先介绍非空接口的内部数据结构,空接口的底层更简单,放到最后介绍。非空接口的底层数据结构是 iface,代码位于Go语言安装目录的 src/runtime/runtime2.go 文件中。 iface 数据结构非空接口初始化的过程就是初始化一个 iface 类型的结构,示例如下://src/runtime/runtime2.go type iface struct { tab *itab //itab 存放类型及方法指针信息 data unsafe.Pointer //数据信息 }可以看到 iface 结构很简单,有两个指针类型字段。
data 指向具体的实例数据,如果传递给接口的是值类型,则 data 指向的是实例的副本;如果传递给接口的是指针类型,则 data 指向指针的副本。总而言之,无论接口的转换,还是函数调用,Go 遵循一样的规则——值传递。 接下来看一下 itab 数据结构,itab 是接口内部实现的核心和基础。示例如下: //src/runtime/runtime2.go type itab struct { inter *interfacetype //接口自身的静态类型 _type *_type //_type 就是接口存放的具体实例的类型(动态类型) //hash 存放具体类型的 Hash 值 hash uint32 // copy of _type.hash. Used for type switches. _ [4]byte fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. }itab 有 5 个字段:
itab 这个数据结构是非空接口实现动态调用的基础,itab 的信息被编译器和链接器保存了下来,存放在可执行文件的只读存储段(.rodata)中。itab 存放在静态分配的存储空间中,不受 GC 的限制,其内存不会被回收。 接下来介绍 _type 数据结构,Go语言是一种强类型的语言,编译器在编译时会做严格的类型校验。所以 Go 必然为每种类型维护一个类型的元信息,这个元信息在运行和反射时都会用到,Go语言的类型元信息的通用结构是 _type(代码位于 src/runtime/type.go), 其他类型都是以 _type 为内嵌宇段封装而成的结构体。 //src/runtime/type.go type type struct { size uintptr // 大小 ptrdata uintptr //size of memory prefix holding all pointers hash uint32 //类型Hash tflag tflag //类型的特征标记 align uint8 //_type 作为整体交量存放时的对齐字节数 fieldalign uint8 //当前结构字段的对齐字节数 kind uint8 //基础类型枚举值和反射中的 Kind 一致,kind 决定了如何解析该类型 alg *typeAlg //指向一个函数指针表,该表有两个函数,一个是计算类型 Hash 函 //数,另一个是比较两个类型是否相同的 equal 函数 //gcdata stores the GC type data for the garbage collector. //If the KindGCProg bit is set in kind,gcdata is a GC program. //Otherwise it is a ptrmask bitmap. See mbitmap.go for details. gcdata *byte //GC 相关信息 str nameOff //str 用来表示类型名称字符串在编译后二进制文件中某个 section //的偏移量 //由链接器负责填充 ptrToThis typeOff //ptrToThis 用来表示类型元信息的指针在编译后二进制文件中某个 //section 的偏移量 //由链接器负责填充 }_type 包含所有类型的共同元信息,编译器和运行时可以根据该元信息解析具体类型、类型名存放位置、类型的 Hash 值等基本信息。 这里需要说明一下:_type 里面的 nameOff 和 typeOff 最终是由链接器负责确定和填充的,它们都是一个偏移量(offset),类型的名称和类型元信息实际上存放在连接后可执行文件的某个段(section)里,这两个值是相对于段内的偏移量,运行时提供两个转换查找函数。例如:
//src/runtime/type.go 接下来看一下接口的类型元信息的数据结构。示例如下: //描述接口的类型 type interfacetype struct { typ _type //类型通用部分 pkgpath name //接口所属包的名字信息, name 内存放的不仅有名称,还有描述信息 mhdr []imethod //接口的方法 } //接口方法元信息 type imethod struct { name nameOff //方法名在编译后的 section 里面的偏移量 ityp typeOff //方法类型在编译后的 section 里面的偏移量 } 接口调用过程分析前面讨论了接口内部的基本数据结构,下面就来通过跟踪接口实例化和动态调用过程,使用 Go 源码和反汇编代码相结合的方式进行研究。下面是一段非常简单的接口调用代码。//iface.go package main type Caler interface { Add (a,b int) int Sub (a,b int) int } type Adder struct {id int } //go:noinline func (adder Adder) Add(a,b int) int { return a + b } //go:noinline func (adder Adder) Sub(a,b int) int { return a - b } func main () { var m Caler=Adder{id: 1234} m.Add(10,32) }生成汇编代码: go build -gcflags= "-S - N -l" iface.go >iface.s 2>&1 接下来分析 main 函数的汇编代码,非关键逻辑已经去掉:"".main STEXT size=151 args=0x0 locals=0x40 ... 0x000f 00015 (src/iface.go:16) SUBQ $64,SP 0x0013 00019 (src/iface.go:16) MOVQ BP,56(SP) 0x0018 00024 (src/iface.go:16) LEAQ 56(SP),BP为 main 函数堆战开辟空间并保存原来的 BP 指针,这是函数调用前编译器的固定动作。 var m Caler = Adder {id: 1234} 语句汇编代码分析:
0x00ld 00029 (src/iface.go:17) MOVQ??? $0,""..autotmp_1+32(SP)
0x002f 00047 (src/iface.go:17) LEAQ??? go.itab."".Adder,"".Caler(SB),AX 注意:这个标号在链接器链接的过程中会替换为具体的地址。我们知道 (SP) 里面存放的是指向 itab(Caler,Adder) 的元信息的地址,这里 (SP) 是函数调用第一个参数的位置。示例如下:
0x003a 00058 (src/iface.go:17) LEAQ ""..autotmp_1+32(SP),AX 0x0044 00068 (src/iface.go:17) CALL??? runtime.convT2I64(SB) runtime.convT2I64 函数是运行时接口动态调用的核心函数。runtime 中有一类这样的函数,看一下 runtime.convT2I64 的源码:func convT2I64(tab *itab,elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t,elem,getcallerpc(unsafe.Pointer(&tab)),funcPC(convT2I64)) } if msanenabled { msanread (elem,t.size) } var x unsafe.Pointer if *(uint64) (elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(8,t,false) *(*uint64) (x) = *(*uint64) (elem) } i.tab = tab i.data = x return }从上述源码可以清楚地看出,runtime.convT2I64 的两个参数分别是 *itab 和 unsafe.Pointer 类型,这两个参数正是上文传递进去的两个参数值:go.itab."".Adder,"".Caler(SB) 和指向 Adder 对象复制的指针。 runtime.convT2I64 的返回值是一个 iface 数据结构,其意义就是根据 itab 元信息和对象值复制的指针构建和初始化 iface 数据结构,iface 数据结构是实现接口动态调用的关键。至此己经完成了接口初始化的工作,即完成了 iface 数据结构的构建过程。下一步就是接口方法调用了。示例如下:
0x0049 00073 (src/iface.go:17) MOVQ 24(SP),AX m.Add(10,32) 对应的汇编代码如下:
0x00Sd 00093 (src/iface.go:18) MOVQ "".m+40(SP),AX type itab struct { inter *interfacetype _type *type link *itab hash uint32 //copy of _type.hash.Used for type switches. bad bool //type does not implement interface inhash bool //has this itab been added to hash? unused [2]byte fun [1] uintptr //variable sized }32(AX) 正好是函数指针的位置, 即存放 Adder *Add() 方法指针的地址(注意:编译器将接收者为值类型的 Add 方法转换为指针的 Add 方法,编译器的这种行为是为了方便调用和优化)。 第 3 条指令和第 6 条指令是将对象指针作为接下来函数调用的第 1 个参数。 第 4 条和第 5 条指令是准备函数的第 2、第 3 个参数。 第 8 条指令是调用 Adder 类型的 Add 方法。 此函数调用时,对象的值的副本作为第 1 个参数,调用格式可以表述为 func(reciver,param1,param2) 。至此,整个接口的动态调用完成。从中可以清楚地看到,接口的动态调用分为两个阶段:
接下来看一下 go.itab. "".Adder,"".Caler(SB) 这个符号在哪里?我们使用 readelf 工具来静态地分析编译后的 ELF 格式的可执行程序。例如: #编译 #go build -gcflag s= "-N -l" iface.go #readelf -s -W iface legrep 'itab' 60:000000000047b220 0 OBJECT LOCAL DEFAULT 5 runtime.itablink 61:000000000047b230 0 OBJECT LOCAL DEFAULT 5 runtime.eitablink 88:00000000004aa100 48 OBJECT GLOBAL DEFAULT 8 go.itab.main.Adder,main.Caler 214:00000000004aa080 40 OBJECT GLOBAL DEFAULT 8 go.itab.runtime.errorString,error 418:00000000004095e0 1129 FUNC GLOBAL DEFAULT 1 runtime.getitab 419:0000000000409a50 1665 FUNC GLOBAL DEFAULT 1 runtime.additab 420:000000000040a0e0 257 FUNC GLOBAL DEFAULT 1 runtime.itabsinit可以看到符号表里面 go.itab.main.Adder,main.Caler 对应本程序里面 itab 的元信息,它被存放在第 8 个段中。我们来看一下第 8 个段是什么段?
#readelf -S -W iface |egrep '\[8] | I Nr' 接口调用代价前面讨论了接口动态调用过程,这个过程有两部分多余时耗,一个是接口实例化的过程,也就是 iface 结构建立的过程,一旦实例化后,这个接口和具体类型的 itab 数据结构是可以复用的;另一个是接口的方法调用,它是一个函数指针的间接调用。同时我们应考虑到接口调用是一种动态的计算后的跳转调用,这对现代的计算机 CPU 的执行很不友好,会导致 CPU 缓存失效和分支预测失败,这也有一部分的性能损失。当然最直接的办法就是对比测试,看看接口动态调用的性能损失到底有多大。 测试用例直接选用 GitHub 上的一个测试用例,稍作改写,代码如下。package main import ( "testing" ) type identifier interface { idInline() int32 idNoInline() int32 } type id32 struct{ id int32 } func (id *id32) idinline() int32 { return id.id } //go:noinline func (id *id32) idNoinline() int32 { return id.id } var escapeMePlease *id32 //主要作用是强制变量内存在 heap 上分配 //go:noinline func escapeToHeap(id *id32) identifier { escapeMePlease = id return escapeMePlease } //直接调用 func BenchmarkMethodCall_direct(b *testing.B) { // var myID int32 b.Run("single/noinline",func(b *testing.B) { m := escapeToHeap(&id32{id: 6754}).(*id32) b.ResetTimer () for i := 0; i < b.N; i++ { //CALL "".(*id32).idNoinline(SB) //MOVL 8(SP),AX //MOVQ "".&myID+40(SP),CX //MOVL AX,(CX) myID = m.idNoInline() } } b.Run ("single/inline",func(b *testing.B) { m := escapeToHeap(&id32{id: 6754}).(*id32) b.ResetTimer() for i: = 0; i < b.N; i++ { //MOVL (DX),SI //MOVL SI,(CX) myID = m.idinline() } }) } //接口调用 func BenchmarkMethodCall_interface(b *testing.B) { // var myID int32 b.Run("single/noinline",func(b *testing.B) { m := escapeToHeap(&id32{id: 6754}) b.ResetTimer() for i := 0; i < b.N ; i++ { // MOVQ 32(AX),CX // MOVQ "".m.data+40(SP),DX // MOVQ DX,(SP) // CALL CX // MOVL 8(SP),AX // MOVQ "".&myID+48(SP),CX // MOVL AX,(CX) myID = m.idNoInline() } }) b.Run("single/inline",func(b *testing.B) { m := escapeToHeap(&id32{id: 6754}) b.ResetTimer() for i := 0; i < b.N; i++ { //MOVQ 24(AX),CX //MOVQ "".m.data+40(SP),DX //MOVQ DX,(SP) //CALL CX //MOVL 8(SP),AX //MOVQ "". &myID+48(SP),ex //MOVL AX,(CX) myID = m.idinline() } }) } // func main() {} 测试过程和结果//直接调用 #go test -bench= 'BenchmarkMethodCall_direct/single/noinline' -cpu=1 -count=5 iface_bench_test.go goos:linux goarch:amd64 BenchmarkMethodCall_direct/single/noinline 2000000000 2.00 ns/op BenchmarkMethodCall_direct/single/noinline 2000000000 1.97 ns/op BenchmarkMethodCall_direct/single/noinline 2000000000 1.97 ns/op BenchmarkMethodCall_direct/single/noinline 2000000000 1.94 ns/op BenchmarkMethodCall_direct/single/noinline 2000000000 1.97 ns/op PASS ok command-line-arguments 20.682s //接口调用 #go test -bench='BenchmarkMethodCall_interface/single/noinline' -cpu=1 -count=5 iface_bench_test.go goos:linux goarch:amd64 BenchmarkMethodCall_interface/single/noinline 1000000000 2.18 ns/op BenchmarkMethodCall_interface/single/noinline 1000000000 2.16 ns/op BenchmarkMethodCall_interface/single/noinline 1000000000 2.17 ns/op BenchmarkMethodCall_interface/single/noinline 1000000000 2.15 ns/op BenchmarkMethodCall_interface/single/noinline 1000000000 2.16 ns/op PASS ok command-line-arguments 11.930s 结果分析直接调用平均时耗为 1.97ns/op,接口调用的平均时耗为 2.16ns/op,(2.16-1.97)/1.97 约等于 9.64%。可以看到测试结果符合预期,每次迭代接口要慢 0.19ns,大约有 9% 的性能损失。但是要清楚这个百分比并不能真实地反映接口的效率问题,首先调用的方法是一个很简单的方法,方法的耗时占比很小,无形中放大了接口调用的耗时。如果方法里面有复杂的逻辑,则真实的性能损失远远小于9%。 从绝对值的角度来看更合理,那就是每次接口调用大约比直接调用慢 0.2ns ,从这个角度看,动态调用的性能损失几乎可以忽略不计。 空接口数据结构前面我们了解到空接口 interface{} 是没有任何方法集的接口,所以空接口内部不需要维护和动态内存分配相关的数据结构 itab 。空接口只关心存放的具体类型是什么,具体类型的值是什么,所以空接口的底层数据结构也很简单,具体如下://go/src/runtime/runtime2.go //空接口 type eface struct { _type *_type data unsafe.Pointer }从 eface 的数据结构可以看出,空接口不是真的为空,其保留了具体实例的类型和值拷贝,即便存放的具体类型是空的,空接口也不是空的。 由于空接口自身没有方法集,所以空接口变量实例化后的真正用途不是接口方法的动态调用。空接口在Go语言中真正的意义是支持多态,有如下几种方式使用了空接口(将空接口类型还原):
至此,接口内部实现原理全部讲完,大家在了解和学习接口内部实现的知识的同时,更应该学习和思考分析过程中的方法和技巧,使用该方法可以继续分析接口断言、接口查询和接口赋值的内部实现机制。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |