2011-08-03 Music Genre classification Scripts
scripts: (1) Batch extract all the feature sets using OpenSmile:???? perl stddirectory_smileextract.pl /home/sudan/Desktop/research/MusicGenreClassification/genres_16k_mono_wav/ emobase.conf out.arff (2) Using bextract to do the prediction (with all the feature sets in bextract) bextract -sv -timbral -spfe -chroma -sfm -scf -lsp -lpcc genres10.mf -tc testdata_2.mf -w temp.arff (3)Using bextract to do the prediction (with only the timbral feature sets in bextract)(3)? bextract -sv -timbral genres10.mf -tc testdata_2.mf -w temp.arff Even though the recognition results seems better for (3) over (2),it is still not make so much sense at all. (4) add a plain line betweent the test mf file???awk '{print $1 "n"}' testdata_2.mf >testdata_2_double.mf (5) USing weka's SMO to do the prediction: ?java -Xms1024m weka.classifiers.functions.SMO -t /home/sudan/Desktop/research/MusicGenreClassification/features_all_temp.arff -c last -T /home/sudan/Desktop/research/MusicGenreClassification/testdata_3.arff -p 0 -o > pred.out (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |