如何制作更平滑的Perlin噪音发生器?
我正在尝试使用Perlin噪声发生器来制作地图的瓷砖,但我注意到我的噪音太尖锐了,我的意思是,它有太多的高度,没有平坦的地方,而且它们看起来不像山,岛屿,湖泊或任何东西;它们似乎太随意而且有很多峰值.
在问题的最后,需要进行修改才能修复它. 该问题的重要代码是: 1D: def Noise(self,x): # I wrote this noise function but it seems too random random.seed(x) number = random.random() if number < 0.5: final = 0 - number * 2 elif number > 0.5: final = number * 2 return final def Noise(self,x): # I found this noise function on the internet x = (x<<13) ^ x return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0) 2D: def Noise(self,x,y): # I wrote this noise function but it seems too random n = x + y random.seed(n) number = random.random() if number < 0.5: final = 0 - number * 2 elif number > 0.5: final = number * 2 return final def Noise(self,y): # I found this noise function on the internet n = x + y * 57 n = (n<<13) ^ n return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0) 我在代码中留下了1D和2D Perlin噪音,因为可能有人对此感兴趣: import random import matplotlib.pyplot as plt # To make graphs from mpl_toolkits.mplot3d import Axes3D # To make 3D graphs import numpy as np # To make graphs class D(): # Base of classes D1 and D2 def Cubic_Interpolate(self,v0,v1,v2,v3,x): P = (v3 - v2) - (v0 - v1) Q = (v0 - v1) - P R = v2 - v0 S = v1 return P * x**3 + Q * x**2 + R * x + S class D1(D): def __init__(self,lenght,octaves): self.result = self.Perlin(lenght,octaves) def Noise(self,x): # I wrote this noise function but it seems too random random.seed(x) number = random.random() if number < 0.5: final = 0 - number * 2 elif number > 0.5: final = number * 2 return final def Noise(self,x): # I found this noise function on the internet x = (x<<13) ^ x return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0) def Perlin(self,octaves): result = [] for x in range(lenght): value = 0 for y in range(octaves): frequency = 2 ** y amplitude = 0.25 ** y value += self.Interpolate_Noise(x * frequency) * amplitude result.append(value) print(f"{x} / {lenght} ({x/lenght*100:.2f}%): {round(x/lenght*10) * '#'} {(10-round(x/lenght*10)) * ' '}. Remaining {lenght-x}.") # I don't use `os.system('cls')` because it slow down the code. return result def Smooth_Noise(self,x): return self.Noise(x) / 2 + self.Noise(x-1) / 4 + self.Noise(x+1) / 4 def Interpolate_Noise(self,x): round_x = round(x) frac_x = x - round_x v0 = self.Smooth_Noise(round_x - 1) v1 = self.Smooth_Noise(round_x) v2 = self.Smooth_Noise(round_x + 1) v3 = self.Smooth_Noise(round_x + 2) return self.Cubic_Interpolate(v0,frac_x) def graph(self,*args): plt.plot(np.array(self.result),'-',label = "Line") for x in args: plt.axhline(y=x,color='r',linestyle='-') plt.xlabel('X') plt.ylabel('Y') plt.title("Simple Plot") plt.legend() plt.show() class D2(D): def __init__(self,octaves = 1): self.lenght_axes = round(lenght ** 0.5) self.lenght = self.lenght_axes ** 2 self.result = self.Perlin(self.lenght,y): # I wrote this noise function but it seems too random n = x + y random.seed(n) number = random.random() if number < 0.5: final = 0 - number * 2 elif number > 0.5: final = number * 2 return final def Noise(self,y): # I found this noise function on the internet n = x + y * 57 n = (n<<13) ^ n return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0) def Smooth_Noise(self,y): corners = (self.Noise(x - 1,y - 1) + self.Noise(x + 1,y - 1) + self.Noise(x - 1,y + 1) + self.Noise(x + 1,y + 1) ) / 16 sides = (self.Noise(x - 1,y) + self.Noise(x + 1,y) + self.Noise(x,y - 1) + self.Noise(x,y + 1) ) / 8 center = self.Noise(x,y) / 4 return corners + sides + center def Interpolate_Noise(self,y): round_x = round(x) frac_x = x - round_x round_y = round(y) frac_y = y - round_y v11 = self.Smooth_Noise(round_x - 1,round_y - 1) v12 = self.Smooth_Noise(round_x,round_y - 1) v13 = self.Smooth_Noise(round_x + 1,round_y - 1) v14 = self.Smooth_Noise(round_x + 2,round_y - 1) i1 = self.Cubic_Interpolate(v11,v12,v13,v14,frac_x) v21 = self.Smooth_Noise(round_x - 1,round_y) v22 = self.Smooth_Noise(round_x,round_y) v23 = self.Smooth_Noise(round_x + 1,round_y) v24 = self.Smooth_Noise(round_x + 2,round_y) i2 = self.Cubic_Interpolate(v21,v22,v23,v24,frac_x) v31 = self.Smooth_Noise(round_x - 1,round_y + 1) v32 = self.Smooth_Noise(round_x,round_y + 1) v33 = self.Smooth_Noise(round_x + 1,round_y + 1) v34 = self.Smooth_Noise(round_x + 2,round_y + 1) i3 = self.Cubic_Interpolate(v31,v32,v33,v34,frac_x) v41 = self.Smooth_Noise(round_x - 1,round_y + 2) v42 = self.Smooth_Noise(round_x,round_y + 2) v43 = self.Smooth_Noise(round_x + 1,round_y + 2) v44 = self.Smooth_Noise(round_x + 2,round_y + 2) i4 = self.Cubic_Interpolate(v41,v42,v43,v44,frac_x) return self.Cubic_Interpolate(i1,i2,i3,i4,frac_y) def Perlin(self,octaves): result = [] for x in range(lenght): value = 0 for y in range(octaves): frequency = 2 ** y amplitude = 0.25 ** y value += self.Interpolate_Noise(x * frequency,x * frequency) * amplitude result.append(value) print(f"{x} / {lenght} ({x/lenght*100:.2f}%): {round(x/lenght*10) * '#'} {(10-round(x/lenght*10)) * ' '}. Remaining {lenght-x}.") # I don't use `os.system('cls')` because it slow down the code. return result def graph(self,color = 'viridis'): # Other colors: https://matplotlib.org/examples/color/colormaps_reference.html fig = plt.figure() Z = np.array(self.result).reshape(self.lenght_axes,self.lenght_axes) ax = fig.add_subplot(1,2,1,projection='3d') X = np.arange(self.lenght_axes) Y = np.arange(self.lenght_axes) X,Y = np.meshgrid(X,Y) d3 = ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=color,linewidth=0,antialiased=False) fig.colorbar(d3) ax = fig.add_subplot(1,2) d2 = ax.imshow(Z,interpolation='none') fig.colorbar(d2) plt.show() 问题是输出似乎不适合地图. 使用以下命令查看此输出: test = D2(1000,3) test.graph() 我正在寻找更顺畅的东西. 也许在二维噪音中很难注意到我在说什么,但在一维中它更容易: test = D1(1000,3) test.graph() 来自互联网的噪音功能稍微小一点,频率较低,但它仍然有太多.我正在寻找更顺畅的东西. 这样的事情可能是: 或这个: P.S:我是根据this pseudocode制作的. 编辑: Pikalek: 即使值较低,它也有峰值,没有曲线或平滑/平坦的线条. geza:解决方案 感谢geza’s suggestions,我找到了解决问题的方法: def Perlin(self,lenght_axes,octaves,zoom = 0.01,amplitude_base = 0.5): result = [] for y in range(lenght_axes): line = [] for x in range(lenght_axes): value = 0 for o in range(octaves): frequency = 2 ** o amplitude = amplitude_base ** o value += self.Interpolate_Noise(x * frequency * zoom,y * frequency * zoom) * amplitude line.append(value) result.append(line) print(f"{y} / {lenght_axes} ({y/lenght_axes*100:.2f}%): {round(y/lenght_axes*20) * '#'} {(20-round(y/lenght_axes*20)) * ' '}. Remaining {lenght_axes-y}.") return result 其他修改包括: > Z = np.array(self.result)而不是图函数中的Z = np.array(self.result).reshape(self.lenght_axes,self.lenght_axes). 解决方法
我在你的代码中发现了这些错误:
>您需要将Interpolate_Noise参数乘以“缩放”到地图中(例如,将x乘以0.01).如果你在1D情况下这样做,你会发现生成的函数已经好多了 这是我的答案,简单的(C)实现Perlin-like(它不是正确的perlin)噪音:https://stackoverflow.com/a/45121786/8157187 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |