Delphi 高效读写锁
本人设计了一个高效读写锁,可实现多个线程读一个线程写的锁,应该比Delphi自带的读写锁高效,本人没有做对比测试。 本文的锁不可以在一个线程里重入,否则会锁死,另外读写锁最多支持65535个线程同时读。 // [email?protected] // 跨平台简易高效锁 unit utLocker; interface type // 多读单写锁 // 1.写的时候阻塞其他所有写和读 // 2.读的时候不阻塞其他读,但阻塞所有写,当阻塞了一个或以上的写后,将阻塞所有后来新的读 TMultiReadSingleWriteLocker = class protected [Volatile] FLocker: Integer; public procedure LockRead; procedure UnLockRead; inline; procedure LockWrite; procedure UnLockWrite; inline; function TryLockRead: Boolean; inline; function TryLockWrite: Boolean; inline; constructor Create; end; TSimpleLocker = class protected [Volatile] FLocker: Integer; public procedure Lock; procedure UnLock; inline; function TryLock: Boolean; inline; end; implementation uses System.SyncObjs,System.SysUtils,System.Classes; type TSpinWait = record private const YieldThreshold = 10; Sleep1Threshold = 20; Sleep0Threshold = 5; private FCount: Integer; function GetNextSpinCycleWillYield: Boolean; inline; public procedure Reset;inline; procedure SpinCycle;inline; property Count: Integer read FCount; property NextSpinCycleWillYield: Boolean read GetNextSpinCycleWillYield; end; { TSpinWait } function TSpinWait.GetNextSpinCycleWillYield: Boolean; begin Result := (FCount > YieldThreshold) or (CPUCount = 1); end; procedure TSpinWait.Reset; begin FCount := 0; end; procedure TSpinWait.SpinCycle; var SpinCount: Integer; begin if NextSpinCycleWillYield then begin if FCount >= YieldThreshold then SpinCount := FCount - YieldThreshold else SpinCount := FCount; if SpinCount mod Sleep1Threshold = Sleep1Threshold - 1 then TThread.Sleep(1) else if SpinCount mod Sleep0Threshold = Sleep0Threshold - 1 then TThread.Sleep(0) else TThread.Yield; end else TThread.SpinWait(4 shl FCount); Inc(FCount); if FCount < 0 then FCount := YieldThreshold + 1; end; { TMultiReadSingleWriteLocker } procedure TMultiReadSingleWriteLocker.LockRead; var CurLock: Integer; Wait: TSpinWait; begin Wait.Reset; while True do begin CurLock := FLocker; if CurLock <= $FFFF then begin if TInterlocked.CompareExchange(FLocker,CurLock + 1,CurLock) = CurLock then Exit; end; Wait.SpinCycle; end; end; procedure TMultiReadSingleWriteLocker.LockWrite; var CurLock: Integer; Wait: TSpinWait; begin Wait.Reset; while True do begin CurLock := FLocker; if CurLock <= $FFFF then begin if TInterlocked.CompareExchange(FLocker,CurLock + $10000,CurLock) = CurLock then Exit; end; Wait.SpinCycle; end; end; function TMultiReadSingleWriteLocker.TryLockRead: Boolean; var CurLock: Integer; begin CurLock := FLocker; if CurLock <= $FFFF then Result := TInterlocked.CompareExchange(FLocker,CurLock + 1,CurLock) = CurLock else Result := False; end; function TMultiReadSingleWriteLocker.TryLockWrite: Boolean; var CurLock: Integer; begin CurLock := FLocker; if CurLock <= $FFFF then Result := TInterlocked.CompareExchange(FLocker,CurLock + $10000,CurLock) = CurLock else Result := False; end; procedure TMultiReadSingleWriteLocker.UnLockWrite; begin if FLocker < $10000 then raise Exception.Create(‘TMultiReadSingleWriteLocker Error‘); TInterlocked.Add(FLocker,-$10000); end; procedure TMultiReadSingleWriteLocker.UnLockRead; begin TInterlocked.Decrement(FLocker); end; constructor TMultiReadSingleWriteLocker.Create; begin FLocker := 0; end; { TSimpleLocker } procedure TSimpleLocker.Lock; var Wait: TSpinWait; begin Wait.Reset; while True do begin if FLocker = 0 then begin if TInterlocked.CompareExchange(FLocker,1,0) = 0 then Exit; end; Wait.SpinCycle; end; end; function TSimpleLocker.TryLock: Boolean; begin if FLocker = 0 then begin Result := TInterlocked.CompareExchange(FLocker,0) = 0; end else Result := False; end; procedure TSimpleLocker.UnLock; begin if TInterlocked.CompareExchange(FLocker,0,1) <> 1 then raise Exception.Create(‘TSimpleLocker Error‘); end; end. ? 一个简易 无锁池 1.所有读写无等待,不需要判断条件直接读写(除自动扩充容量时),效率是一般带锁或带条件判断池的两倍以上。 2.预先开辟2的幂大小容量,可自增,每次翻倍 3.仅提供思路,工程应用可靠性还不确定。 // 无锁池 // hezihang @cnblogs.com // 20160228 增加代引用计数器内存块的池,增加编译指令POOLGROW功能,可打开关闭池的自动翻倍增长功能 // 20160225 修正Grow中FWritePtr没有增长Bug // 20140609 增加Grow临界区,减少等待时间 // 20140608 修正可能存在同时Grow的Bug unit Iocp.AtomPool; interface { .$DEFINE POOLGROW } Uses System.SysUtils,System.SyncObjs; Type Int32 = Integer; UInt32 = Cardinal; TAtomPoolAbstract = class private FWritePtr: Int32; FReadPtr: Int32; FHighBound: UInt32; FData: array of Pointer; {$IFDEF POOLGROW} FCs: TCriticalSection; FLock: Int32; procedure CheckGrow; inline; procedure Grow; inline; {$ENDIF} Protected function AllocItemResource: Pointer; virtual; abstract; procedure FreeItemResource(Item: Pointer); virtual; abstract; function GetCapacity: UInt32; procedure FreeResources; Public procedure AllocResources; function Get: Pointer; procedure Put(Item: Pointer); Constructor Create(Capacity: UInt32); Virtual; Destructor Destroy; Override; property Capacity: UInt32 read GetCapacity; End; TAtomPoolMem4K = class(TAtomPoolAbstract) function AllocItemResource: Pointer; override; procedure FreeItemResource(Item: Pointer); override; end; // 内存块带引用计数器的池,池容量恒定不能增长 TAtomMemoryPoolRef = class private FMemory: PByteArray; FWritePtr: Int32; FReadPtr: Int32; FHighBound: UInt32; FMemSize: UInt32; FData: array of Pointer; FDataRef: array of Int32; Protected function GetCapacity: UInt32; procedure AllocResources; procedure FreeResources; Public function Get: Pointer; procedure Put(Item: Pointer); function IncRef(Item: Pointer): Int32; function DecRef(var Item: Pointer): Int32; Constructor Create(Capacity: UInt32; MemSize: UInt32); Destructor Destroy; Override; property Capacity: UInt32 read GetCapacity; property MemSize:UInt32 read FMemSize; End; Implementation const MAXTHREADCOUNT = 1000; // 从池中申请资源最大线程数 // 创建池,大小必须是2的幂,并且必须大于MAXTHREADCOUNT Constructor TAtomPoolAbstract.Create(Capacity: UInt32); var OK: Boolean; Begin Inherited Create; OK := (Capacity and (Capacity - 1) = 0); OK := OK and (Capacity > MAXTHREADCOUNT); if not OK then raise Exception.Create(Format(‘池长度必须大于%d并为2的幂‘,[MAXTHREADCOUNT])); {$IFDEF POOLGROW} FCs := TCriticalSection.Create; {$ENDIF} FHighBound := Capacity - 1; FReadPtr := 0; End; Destructor TAtomPoolAbstract.Destroy; Begin FreeResources; SetLength(FData,0); {$IFDEF POOLGROW} FCs.Free; {$ENDIF} Inherited; End; procedure TAtomPoolAbstract.AllocResources; var i: UInt32; begin try SetLength(FData,Capacity); for i := 0 to FHighBound do FData[i] := AllocItemResource; except Raise Exception.Create(‘池申请内存失败‘); end; end; procedure TAtomPoolAbstract.FreeResources; var i: UInt32; begin for i := FHighBound downto 0 do Self.FreeItemResource(FData[i]); end; procedure TAtomPoolAbstract.Put(Item: Pointer); var N: UInt32; begin {$IFDEF POOLGROW} CheckGrow; {$ENDIF} N := TInterlocked.Increment(FWritePtr); FData[N and FHighBound] := Item; end; Function TAtomPoolAbstract.Get: Pointer; var {$IFDEF POOLGROW} N,M,K: UInt32; {$ELSE} N: UInt32; {$ENDIF} begin {$IFDEF POOLGROW} N := FWritePtr and FHighBound; M := FReadPtr and FHighBound; K := (M + MAXTHREADCOUNT) and FHighBound; if (N > M) and (N < K) then // if ((N > M) and (N < K)) or ((N < M) and (N > K)) then begin Grow end; {$ENDIF} N := TInterlocked.Increment(FReadPtr); Result := FData[N and FHighBound]; end; function TAtomPoolAbstract.GetCapacity: UInt32; begin Result := FHighBound + 1; end; {$IFDEF POOLGROW} procedure TAtomPoolAbstract.CheckGrow; begin if TInterlocked.Add(FLock,0) > 0 then begin while FLock = 1 do Sleep(0); FCs.Enter; FCs.Leave; end; end; procedure TAtomPoolAbstract.Grow; var i,N: Integer; begin if TInterlocked.CompareExchange(FLock,0) = 0 then // 加锁 begin FCs.Enter; TInterlocked.Increment(FLock); N := Length(FData); SetLength(FData,N + N); for i := N to High(FData) do FData[i] := AllocItemResource; TInterlocked.Increment(FLock); FHighBound := High(FData); FWritePtr := FHighBound; FCs.Leave; TInterlocked.Exchange(FLock,0); end else CheckGrow; end; {$ENDIF} { TAtomPoolMem4K } function TAtomPoolMem4K.AllocItemResource: Pointer; begin GetMem(Result,4096); end; procedure TAtomPoolMem4K.FreeItemResource(Item: Pointer); begin FreeMem(Item,4096); end; Constructor TAtomMemoryPoolRef.Create(Capacity: UInt32; MemSize: UInt32); var OK: Boolean; Begin Inherited Create; OK := (Capacity and (Capacity - 1) = 0); OK := OK and (Capacity > MAXTHREADCOUNT); if not OK then raise Exception.Create(Format(‘池长度必须大于%d并为2的幂‘,[MAXTHREADCOUNT])); if FMemSize and $10 <> 0 then raise Exception.Create(‘内存块大小必须是16的倍数‘); FMemSize := MemSize; try AllocResources; FHighBound := Capacity - 1; FWritePtr := FHighBound; FReadPtr := 0; except Raise Exception.Create(‘池申请内存失败‘); end; End; function TAtomMemoryPoolRef.DecRef(var Item: Pointer): Int32; var N: Integer; begin N := (NativeUInt(Item) - NativeUInt(FMemory)) div FMemSize; if (N>=0) and (N<=FHighBound) then begin Result := TInterlocked.Decrement(FDataRef[N]); if Result = 0 then begin Put(Item); Item := nil; end; end else Result:=-1; end; Destructor TAtomMemoryPoolRef.Destroy; Begin FreeResources; Inherited; End; procedure TAtomMemoryPoolRef.AllocResources; var i: UInt32; P: PByteArray; begin SetLength(FData,Capacity); SetLength(FDataRef,Capacity); FillChar(FDataRef[0],Capacity * Sizeof(FDataRef[0]),0); GetMem(FMemory,Length(FData) * FMemSize); // 一次申请所有内存 P := FMemory; for i := 0 to FHighBound do begin FData[i] := P; Inc(P,FMemSize); end; end; procedure TAtomMemoryPoolRef.FreeResources; begin FreeMem(FMemory,Length(FData) * FMemSize); SetLength(FData,0); SetLength(FDataRef,0); end; procedure TAtomMemoryPoolRef.Put(Item: Pointer); var N: UInt32; begin N := TInterlocked.Increment(FWritePtr); FData[N and FHighBound] := Item; end; Function TAtomMemoryPoolRef.Get: Pointer; var N: UInt32; begin N := TInterlocked.Increment(FReadPtr); Result := FData[N and FHighBound]; end; function TAtomMemoryPoolRef.GetCapacity: UInt32; begin Result := FHighBound + 1; end; function TAtomMemoryPoolRef.IncRef(Item: Pointer): Int32; var N: Integer; begin N := (NativeInt(Item) - NativeInt(FMemory)) div FMemSize; if (N>=0) and (N<=FHighBound) then Result := TInterlocked.Increment(FDataRef[N]) else Result:=-1; end; End. 简易高效的Delphi原子队列本文提供Delphi一个基于原子操作的无锁队列,简易高效。适用于多线程大吞吐量操作的队列。 可用于Android系统和32,64位Windows系统。 ? 感谢歼10和qsl提供了修改建议! 有如下问题: 1.必须事先足够大开辟内存,大到不会出现队列溢出了。 2.队列大小必须是2的幂 3.不能压入空指针 4.本程序还未经过工程应用考验 unit Iocp.AtomQueue; interface Uses SysUtils,SyncObjs; Type TAtomFIFO = Class Protected FWritePtr: Integer; FReadPtr: Integer; FCount:Integer; FHighBound:Integer; FisEmpty:Integer; FData: array of Pointer; function GetSize:Integer; Public procedure Push(Item: Pointer); function Pop: Pointer; Constructor Create(Size: Integer); Virtual; Destructor Destroy; Override; Procedure Empty; property Size: Integer read GetSize; property UsedCount:Integer read FCount; End; Implementation //创建队列,大小必须是2的幂,需要开辟足够大的队列,防止队列溢出 Constructor TAtomFIFO.Create(Size: Integer); var i:NativeInt; OK:Boolean; Begin Inherited Create; OK:=(Size and (Size-1)=0); if not OK then raise Exception.Create(‘FIFO长度必须大于等于256并为2的幂‘); try SetLength(FData,Size); FHighBound:=Size-1; except Raise Exception.Create(‘FIFO申请内存失败‘); end; End; Destructor TAtomFIFO.Destroy; Begin SetLength(FData,0); Inherited; End; procedure TAtomFIFO.Empty; begin while (TInterlocked.Exchange(FReadPtr,0)<>0) and (TInterlocked.Exchange(FWritePtr,0)<>0) and (TInterlocked.Exchange(FCount,0)<>0) do; end; function TAtomFIFO.GetSize: Integer; begin Result:=FHighBound+1; end; procedure TAtomFIFO.Push(Item:Pointer); var N:Integer; begin if Item=nil then Exit; N:=TInterlocked.Increment(FWritePtr) and FHighBound; FData[N]:=Item; TInterlocked.Increment(FCount); end; Function TAtomFIFO.Pop:Pointer; var N:Integer; begin if TInterlocked.Decrement(FCount)<0 then begin TInterlocked.Increment(FCount); Result:=nil; end else begin N:=TInterlocked.Increment(FReadPtr) and FHighBound; //假设线程A调用了Push,并且正好是第1个push, //执行了N:=TInterlocked.Increment(FWritePtr) and FHighBound, //还没执行FData[N]:=Item,被切换到其他线程 //此时假设线程B调用了Push,并且正好是第2个push,并且执行完毕,这样出现FCount=1,第2个Item不为空,而第一个Item还是nil(线程A还没执行赋值) //假设线程C执行Pop,由于Count>0(线程B的作用)所以可以执行到这里,但此时FData[N]=nil(线程A还没执行赋值), //因此线程C要等待线程A完成FData[N]:=Item后,才能取走FData[N] //出现这种情况的概率应该比较小,基本上不会浪费太多CPU while FData[N]=nil do Sleep(1); Result:=FData[N]; FData[N]:=nil; end; end; End. 性能测试: 采用天地弦提供的评估程序,进行了一些修改,分别对使用不同的临界区的队列进行对比结果如下: 其中Swith是因队列读空,进行线程上下文切换的次数 ? ? Delphi的FIFO实现FIFO主要用于多个不同线程或进程之间数据交换时做缓冲区用,尤其适合实时数据通讯应用中的数据缓冲,接收线程(进程)将数据写入FIFO,处理线程(进程)从FIFO取出数据 本单元中: TMemoryFIFO类适用于单进程内不同线程之间交换数据 TMapFileFIFO类适用于不同进程之间交换数据 ? Unit UtFIFO; Interface Uses Windows,SysUtils,SyncObjs; Type PFIFOStruct= ^TFIFOStruct; TFIFOStruct= Record FSize: Integer; FWritePtr: Integer; FReadPtr: Integer; FBuffer: TByteArray; End; TFIFOReadFunc= Function(Buf: Pointer; Count: Integer): Integer; TFIFOReadFuncOfObject= Function(const Buf; Count: Integer): Integer Of Object; TAbstractFIFO= Class Protected FSelfAccess: Boolean; FDataStruct: PFIFOStruct; // 数据区指针 Procedure AllocateResource(Size: Integer); Virtual; Abstract; Procedure FreeResources; Virtual; Abstract; Procedure Lock; Virtual; Abstract; Procedure UnLock; Virtual; Abstract; Public Function FIFOFreeSpace: Integer; Function FIFOUsedSpace: Integer; Function CheckFIFOFull: Boolean; Function CheckFIFOEmpty: Boolean; Function WriteData(const Buf: Pointer; Count: Integer): Integer; Virtual; Function ReadData(Buf: Pointer; Count: Integer): Integer; Virtual; Function ReadDataByFunc(Func: TFIFOReadFuncOfObject; Count: Integer): Integer; Virtual; Constructor Create(Size: Integer); Virtual; Destructor Destroy; Override; Procedure Empty; Function Size: Integer; End; TMemoryFIFO= Class(TAbstractFIFO) Protected FLocker: TCriticalSection; Procedure AllocateResource(Size: Integer); Override; Procedure FreeResources; Override; Procedure Lock; Override; Procedure UnLock; Override; Public Constructor Create(Size: Integer); Override; Destructor Destroy; Override; End; TFileMapFIFO= Class(TAbstractFIFO) Private FMaster:Boolean; FMapHandle: THandle; // 内存映射文件句柄 FMutexHandle: THandle; // 互斥句柄 FMapName: String; // 内存映射对象 FPVHandle: THandle; Protected Procedure AllocateResource(Size: Integer); Override; Procedure FreeResources; Override; Procedure Lock; Override; Procedure UnLock; Override; Public Constructor Create(Const MapName: String; Size: Integer;bMaster:Boolean); Overload; Destructor Destroy; Override; Function WriteData(const Buf: Pointer; Count: Integer): Integer; Override; Function ReadData(Buf: Pointer; Count: Integer): Integer; Override; property PVHandle:NativeUInt read FPVHandle; End; Implementation Function Min(Const A,B: Integer): Integer; inline; begin if A>B then Result:=B else Result:=A end; Constructor TAbstractFIFO.Create(Size: Integer); Begin Inherited Create; AllocateResource(Size); If Not Assigned(FDataStruct) Then Raise Exception.Create(‘FIFO申请内存失败‘); End; Destructor TAbstractFIFO.Destroy; Begin FreeResources; Inherited; End; Function TAbstractFIFO.FIFOFreeSpace; Begin With FDataStruct^ Do Begin Lock; If FWritePtr> FReadPtr Then Result:= (FSize- FWritePtr)+ FReadPtr- 1 Else If FWritePtr< FReadPtr Then Result:= FReadPtr- FWritePtr- 1 Else Result:= FSize; UnLock; End; End; Function TAbstractFIFO.FIFOUsedSpace; Begin With FDataStruct^ Do Begin Lock; If FWritePtr> FReadPtr Then Result:= FWritePtr- FReadPtr Else If FWritePtr< FReadPtr Then Result:= (FSize- FReadPtr)+ FWritePtr Else Result:= 0; UnLock; End; End; Function TAbstractFIFO.CheckFIFOFull: Boolean; Begin With FDataStruct^ Do Begin Lock; If (FWritePtr= FSize- 1)And (FReadPtr= 0) Then Result:= True Else If (FWritePtr+ 1= FReadPtr) Then Result:= True Else Result:= False; UnLock; End; End; Function TAbstractFIFO.CheckFIFOEmpty: Boolean; Begin With FDataStruct^ Do Begin Lock; Result:= (FWritePtr= FReadPtr); UnLock; End; End; Function TAbstractFIFO.WriteData(const Buf: Pointer; Count: Integer): Integer; Var N: Integer; Begin Result:= 0; If Count<= 0 Then Exit; With FDataStruct^ Do Begin Lock; If FWritePtr< FReadPtr Then //如果没有满或已满 Begin Result:= Min(Count,FReadPtr- FWritePtr- 1); Move(Buf^,FBuffer[FWritePtr],Result); FWritePtr:= (FWritePtr+ Result)Mod FSize; End Else If FWritePtr = FReadPtr Then //Buffer 空 Begin Result:= Min(Count,FSize- 1); Move(Buf^,FBuffer[0],Result); FWritePtr:= Result; FReadPtr:= 0; End Else Begin Result:= Min(Count,FSize- FWritePtr); Move(Buf^,Result); if Result=Count then FWritePtr:= (FWritePtr+ Result) Mod FSize else Begin N:= Min(Count- Result,FReadPtr); Move(PByteArray(Buf)^[Result],N); FWritePtr:= N; Result:= Result+ N; End; End; UnLock; End; End; Function TAbstractFIFO.ReadData(Buf: Pointer; Count: Integer): Integer; Var N: Integer; Begin Result:= 0; If Count<= 0 Then Exit; With FDataStruct^ Do Begin Lock; If FReadPtr< FWritePtr Then Begin Result:= Min(Count,FWritePtr- FReadPtr); Move(FBuffer[FReadPtr],Buf^,Result); FReadPtr:= (FReadPtr+ Result)Mod FSize; End Else if FReadPtr>FWritePtr Then Begin Result:= Min(Count,FSize- FReadPtr); Move(FBuffer[FReadPtr],Result); if Result=Count then FReadPtr:=(FReadPtr+Result) mod FSize else Begin N:= Min(Count- Result,FWritePtr); Move(FBuffer[0],PByteArray(Buf)[Result],N); FReadPtr:= N; Result:= Result+ N; End; End; UnLock; End; End; Function TAbstractFIFO.ReadDataByFunc(Func: TFIFOReadFuncOfObject; Count: Integer): Integer; Var N,M: Integer; Begin Result:= 0; If Count<= 0 Then Exit; With FDataStruct^ Do Begin Lock; Try If FReadPtr< FWritePtr Then Begin Result:= Func(FBuffer[FReadPtr],Min(Count,FWritePtr- FReadPtr)); FReadPtr:= (FReadPtr+ Result)Mod FSize; End Else if FReadPtr>FWritePtr Then Begin Result:= Func(FBuffer[FReadPtr],FSize- FReadPtr)); if Result=Count then FReadPtr:=(FReadPtr+Result) mod FSize else Begin N:= Func(FBuffer[0],Min(Count- Result,FWritePtr)); FReadPtr:= N; Result:= Result+ N; End; End; Finally UnLock; End; End; End; Procedure TAbstractFIFO.Empty; Begin Lock; With FDataStruct^ Do Begin FWritePtr:= 0; FReadPtr:= 0; End; UnLock; End; Function TAbstractFIFO.Size: Integer; Begin Result:= FDataStruct^.FSize- 1; End; Constructor TMemoryFIFO.Create(Size: Integer); Begin Inherited Create(Size); FLocker:= TCriticalSection.Create; End; Destructor TMemoryFIFO.Destroy; Begin FLocker.Free; Inherited; End; Procedure TMemoryFIFO.AllocateResource(Size: Integer); Begin Inherited; GetMem(FDataStruct,Size+ 3* Sizeof(Integer)); With FDataStruct^ Do Begin FSize:= Size; FWritePtr:= 0; FReadPtr:= 0; End; End; Procedure TMemoryFIFO.FreeResources; Begin FreeMem(FDataStruct,FDataStruct^.FSize+ 3* Sizeof(Integer)); Inherited; End; Procedure TMemoryFIFO.Lock; Begin FLocker.Enter; End; Procedure TMemoryFIFO.UnLock; Begin FLocker.Leave; End; // 构造函数 Constructor TFileMapFIFO.Create(Const MapName: String; Size: Integer;bMaster:Boolean); Begin FMapName:= MapName; FMaster:=bMaster; Inherited Create(Size); End; Destructor TFileMapFIFO.Destroy; Begin CloseHandle(FPVHandle); Inherited; End; Procedure TFileMapFIFO.AllocateResource(Size: Integer); Begin Inherited; if FMaster then begin FMapHandle:= CreateFileMapping($FFFFFFFF,Nil,PAGE_READWRITE,0,Size+ 3* Sizeof(Integer),PChar(FMapName)); If (FMapHandle= INVALID_HANDLE_VALUE)Or (FMapHandle= 0) Then Raise Exception.Create(‘创建文件映射对象失败!‘); end else FMapHandle:=OpenFileMapping(FILE_MAP_ALL_ACCESS,False,PChar(FMapName)); FDataStruct:= MapViewOfFile(FMapHandle,FILE_MAP_ALL_ACCESS,0); // 创建互斥对象,在写文件映射空间时用到它,以保持数据同步 FMutexHandle:= Windows.CreateMutex(Nil,PChar(FMapName+ ‘.Mtx‘)); FPVHandle := CreateEvent(nil,True,PChar(FMapName + ‘.PV‘)); If (FMutexHandle= 0)or(FPVHandle = 0) Then Raise Exception.Create(‘创建互斥对象失败‘); // 判断是否已经建立文件映射了 If (FMapHandle <> 0)And (GetLastError = ERROR_ALREADY_EXISTS) Then Begin End Else Begin FillChar(FDataStruct^,Size+ 3* Sizeof(Integer),0); FDataStruct^.FSize:= Size; End End; Procedure TFileMapFIFO.FreeResources; Begin UnmapViewOfFile(FDataStruct); CloseHandle(FMutexHandle); CloseHandle(FMapHandle); Inherited; End; Procedure TFileMapFIFO.Lock; Begin WaitForSingleObject(FMutexHandle,INFINITE); // =WAIT_OBJECT_0) End; Procedure TFileMapFIFO.UnLock; Begin ReleaseMutex(FMutexHandle); End; Function TFileMapFIFO.WriteData(const Buf: Pointer; Count: Integer): Integer; Begin Lock; Result:= Inherited WriteData(Buf,Count); SetEvent(FPVHandle); UnLock; End; Function TFileMapFIFO.ReadData(Buf: Pointer; Count: Integer): Integer; Begin Lock; Result:= Inherited ReadData(Buf,Count); UnLock; End; End. (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |