使用keras做多标签分类
发布时间:2020-12-14 04:45:19 所属栏目:大数据 来源:网络整理
导读:In short Don‘t use? softmax . Use? sigmoid ?for activation of your output layer. Use? binary_crossentropy ?for loss function. Use? predict ?for evaluation. Why In? softmax ?when increasing score for one label,all others are lowered (it‘s
In shortDon‘t use? Use? Use? Use? WhyIn? Complete Codefrom keras.models import Sequential from keras.layers import Dense,Dropout,Activation from keras.optimizers import SGD model = Sequential() model.add(Dense(5000,activation=‘relu‘,input_dim=X_train.shape[1])) model.add(Dropout(0.1)) model.add(Dense(600,activation=‘relu‘)) model.add(Dropout(0.1)) model.add(Dense(y_train.shape[1],activation=‘sigmoid‘)) sgd = SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True) model.compile(loss=‘binary_crossentropy‘,optimizer=sgd) model.fit(X_train,y_train,epochs=5,batch_size=2000) preds = model.predict(X_test) preds[preds>=0.5] = 1 preds[preds<0.5] = 0 # score = compare preds and y_test ? ? Ref:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |