朴素贝叶斯分类器
发布时间:2020-12-14 04:33:15  所属栏目:大数据  来源:网络整理 
            导读:1.贝叶斯公式 条件概率 p ( B | A ) = p ( A B ) p ( A ) 则 p ( A B ) = p ( A ) p ( B | A ) 全概率公式 p ( A ) = p ( B 1 ) p ( A | B 1 ) + p ( B 2 ) p ( A | B 2 ) + . . . + p ( B n ) p ( A | B n ) 贝叶斯公式 p ( B i | A ) = p ( A B i ) p ( A
                
                
                
            
                        1.贝叶斯公式
 2.朴素贝叶斯方法
 3.实例在训练过程中,须要计算两个概率:  from numpy import *
def loadDataSet():
    postingList=[[‘my‘,‘dog‘,‘has‘,‘flea‘,‘problems‘,‘help‘,‘please‘],[‘maybe‘,‘not‘,‘take‘,‘him‘,‘to‘,‘park‘,‘stupid‘],[‘my‘,‘dalmation‘,‘is‘,‘so‘,‘cute‘,‘I‘,‘love‘,‘him‘],[‘stop‘,‘posting‘,‘stupid‘,‘worthless‘,‘garbage‘],[‘mr‘,‘licks‘,‘ate‘,‘my‘,‘steak‘,‘how‘,‘stop‘,[‘quit‘,‘buying‘,‘food‘,‘stupid‘]]
    classVec=[0,1,1]
    return postingList,classVec
def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)
def setOfWord2Vec(vocabList,inputSet):
    returnVec = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]=1
        else:
            print "the word: %s is not in my vocabulary!" % word
    return returnVec
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    p0Denom = 2.0; p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect =log(p1Num/p1Denom)
    p0Vect =log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    p1 = sum(vec2Classify*p1Vec) + log(pClass1)
    p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
    if p1 > p0:
        return 1
    else:
        return 0
def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWord2Vec(myVocabList,postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = [‘love‘,‘dalmation‘]
    thisDoc = array(setOfWord2Vec(myVocabList,testEntry))
    print testEntry,‘classified as:‘,classifyNB(thisDoc,p0V,pAb)
    testEntry=[‘stupid‘,‘garbage‘]
    thisDoc = array(setOfWord2Vec(myVocabList,pAb)
def bagOfWords2VecMN(vocabList,inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]+=1
    return returnVec
def textParse(bigString):
    import re
    listOfTokens = re.split(r‘W*‘,bigString)
    return [tok.lower() for tok in listOfTokens if len(tok)>2]
def spamTest():
    docList = []; classList=[]; fullText=[]
    for i in range(1,26):
        wordList = textParse(open(‘email/spam/%d.txt‘ % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open(‘email/ham/%d.txt‘ % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = range(50);
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(setOfWord2Vec(vocabList,docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,pSpam=trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWord2Vec(vocabList,docList[docIndex])
        if classifyNB(array(wordVector),pSpam) != classList[docIndex]:
            errorCount += 1
    print ‘the error rate is: ‘,float(errorCount)/len(testSet)
def calcMostFreq(vocabList,fullText):
    import operator
    freqDict={}
    for token in vocabList:
        freqDict[token] = fullText.count(token)
    sortedFreq = sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedFreq[:30]
def localWords(feed1,feed0):
    import feedparser
    docList=[]; classList=[]; fullText=[]
    minLen = min(len(feed1[‘entries‘]),len(feed0[‘entries‘]))
    for i in range(minLen):
        wordList = textParse(feed1[‘entries‘][i][‘summary‘])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(feed0[‘entries‘][i][‘summary‘])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    top30Words = calcMostFreq(vocabList,fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])
    trainingSet = range(2*minLen)
    testSet=[]
    for i in range(20):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2VecMN(vocabList,float(errorCount)/len(testSet)
    return vocabList,p1V
if __name__=="__main__":
    listOPosts,listClasses = loadDataSet()
    print listOPosts,listClasses
    myVocabList = createVocabList(listOPosts)
    print myVocabList
    print setOfWord2Vec(myVocabList,listOPosts[0])
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWord2Vec(myVocabList,pAb = trainNB0(trainMat,listClasses)
    print p0V
    print testingNB()
    spamTest()
    import feedparser
    ny = feedparser.parse(‘http://newyork.craigslist.org/stp/index.rss‘)
    sf = feedparser.parse(‘http://sfbay.craigslist.org/stp/index.rss‘)
    vocabList,pSF,pNY=localWords(ny,sf)   
  (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!  | 
                  
