动态规划 跳台阶问题的三种解法
发布时间:2020-12-14 04:22:36 所属栏目:大数据 来源:网络整理
导读:You are climbing a stair case. It takes? n ?steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Note:?Given? n ?will be a positive integer. Example 1: Input: 2Output:
You are climbing a stair case. It takes?n?steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Note:?Given?n?will be a positive integer. Example 1: Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps Example 2: Input: 3 Output: 3 Explanation: There are three ways to climb to the tNop. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step public int climbStairs1(int n) { if (n <= 0) return -1; else if (n == 1) return 1; else if (n == 2) return 2; else return climbStairs1(n - 1) + climbStairs1(n - 2); } ? 这种解法时间复杂度很糟糕,在编译器中,每次递归计算的值都没有被保存下来,不建议采用。为了每次递归计算的值保存下来,我们创建一个空间大小为n的数组dp[],空间和时间复杂度都是O(n)。 public int climbStairs2(int n) { if (n <= 0) return -1; else if (n == 1) return 1; int[] dp = new int[n + 1]; dp[1] = 1; dp[2] = 2; for (int i = 3; i <= n; i++) dp[i] = dp[i - 1] + dp[i - 2]; return dp[n]; } ? 在计算的过程中我们发现,dp[]数组满足斐波那契数列关系,可以利用这一特点只定义三个变量,由此来节省空间复杂度,使得空间复杂度优化到O(n). public int climbStairs3(int n) { if (n == 1) return 1; int first = 1; int second = 2; for (int i = 3; i <= n; i++) { int third = first + second; first = second; second = third; } return second; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |