加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

余弦相似性的文本计算思想

发布时间:2020-12-14 04:11:29 所属栏目:大数据 来源:网络整理
导读:余弦相似度: ???????? 在向量空间模型中,两个文本D1和D2之间的内容相关度Sim(D1,D2)常用向量之间夹角的余弦值表示,公式为: 简化点就是 : 其中D1,D2为文本D1,D2的向量表示,|D1|,|D2|分别表示向量D1,D2的模。例如文本D1的特征项为a,b,c,d,权值

余弦相似度:

???????? 在向量空间模型中,两个文本D1和D2之间的内容相关度Sim(D1,D2)常用向量之间夹角的余弦值表示,公式为:

简化点就是 其中D1,D2为文本D1,D2的向量表示,|D1|,|D2|分别表示向量D1,D2的模。例如文本D1的特征项为a,b,c,d,权值分别为30,20,20,10,类目C1的特征项为a,c,d,e,权值分别为40,30,20,10,则D1的向量表示为D1(30,20,10,0),C1的向量表示为C1(40,0,30,20,10)【此处两个文本的向量表示的特征项为两文本特征项的并集,一文本中没有该特征项则值为0】,则根据上式计算出来的文本D1与类目C1相关度Sim(D1,D2)= 0.86。

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读