加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

一个组合恒等式

发布时间:2020-12-14 03:18:43 所属栏目:大数据 来源:网络整理
导读:$k 0$ 。当 $k$为奇数时, begin{aligned} sum_{i = 0}^{k} binom{n}{i} = [binom{n}{0} + binom{n}{1} ] + [binom{n}{2} + binom{n}{3} ] + dots + [binom{n}{k-1} + binom{n}{k} ] = binom{n+1}{1} + binom{n+1}{3} + dots + binom{n+1}{

$k> 0$ 。当 $k$为奇数时,
begin{aligned}
sum_{i = 0}^{k} binom{n}{i} &= [binom{n}{0} + binom{n}{1} ] + [binom{n}{2} + binom{n}{3} ] + dots + [binom{n}{k-1} + binom{n}{k} ]
&= binom{n+1}{1} + binom{n+1}{3} + dots + binom{n+1}{k}
end{aligned}
又有
begin{aligned}
sum_{i = 0}^{k} binom{n}{i} &= binom{n}{0} + [binom{n}{1} + binom{n}{2}] + [binom{n}{3} + binom{n}{4}] + dots + [binom{n}{k-2} + binom{n}{k-1}] + binom{n}{k}
&= binom{n}{0} + binom{n+1}{2} + binom{n+1}{4} + dots + binom{n+1}{k-1} + binom{n}{k}
&= binom{n+1}{0} + binom{n+1}{2} + binom{n+1}{4} + dots + binom{n+1}{k-1} + binom{n}{k}
end{aligned}

两式相加得

begin{aligned}
2 sum_{i = 0}^{k} binom{n}{i} = binom{n}{k} + sum_{i=0}^{k} binom{n+1}{i}
end{aligned}

当 $k$ 为偶数时,经过类似的推导,可得

begin{aligned}
2 sum_{i = 0}^{k} binom{n}{i} = binom{n}{k} + sum_{i=0}^{k} binom{n+1}{i}
end{aligned}

容易验证,当 $k = 0$ 时,上式仍成立。于是,对任意 $0 le k le n$ 有

begin{aligned}
2 sum_{i = 0}^{k} binom{n}{i} = binom{n}{k} + sum_{i=0}^{k} binom{n+1}{i}
end{aligned}

亦即

begin{equation}
sum_{i=0}^{k} binom{n+1}{i} = 2 sum_{i = 0}^{k} binom{n}{i} - binom{n}{k} label{E:1}
end{equation}

为了简便,将 $ sum_{i=0}^{k} binom{n}{i}$ 记做 $S(n,k)$ 。反复使用 eqref{E:1} 式,可以得到

begin{aligned} S(n,k) = 2^{n-k} S(k,k) - 2^{n - k - 1} binom{k}{k} - 2^{n - k - 2} binom{k+1}{k} - dots - 2^{1} binom{n-2}{k} - 2^{0} binom{n-1}{k} end{aligned}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读