加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

大数模板

发布时间:2020-12-14 03:03:46 所属栏目:大数据 来源:网络整理
导读:要好好研究一下。。。。。。。 模板一: #include iostream #include cstring using namespace std; #define DIGIT 4 //四位隔开,即万进制 #define DEPTH 10000 //万进制 #define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行 typedef int bignum_

要好好研究一下。。。。。。。


模板一:

#include <iostream>    
#include <cstring>    
using namespace std;    
    
#define DIGIT   4      //四位隔开,即万进制    
#define DEPTH   10000        //万进制    
#define MAX     251    //题目最大位数/4,要不大直接设为最大位数也行 
typedef int bignum_t[MAX+1];    
     
/************************************************************************/   
/* 读取操作数,对操作数进行处理存储在数组里                             */   
/************************************************************************/   
int read(bignum_t a,istream&is=cin)    
{    
    char buf[MAX*DIGIT+1],ch ;    
    int i,j ;    
    memset((void*)a,sizeof(bignum_t));    
    if(!(is>>buf))return 0 ;    
    for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)    
    ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;    
    for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');    
    for(i=1;i<=a[0];i++)    
    for(a[i]=0,j=0;j<DIGIT;j++)    
    a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
    return 1 ;    
}    
     
void write(const bignum_t a,ostream&os=cout)    
{    
    int i,j ;    
    for(os<<a[i=a[0]],i--;i;i--)    
    for(j=DEPTH/10;j;j/=10)    
    os<<a[i]/j%10 ;    
}    
     
int comp(const bignum_t a,const bignum_t b)    
{    
    int i ;    
    if(a[0]!=b[0])    
    return a[0]-b[0];    
    for(i=a[0];i;i--)    
    if(a[i]!=b[i])    
    return a[i]-b[i];    
    return 0 ;    
}    
     
int comp(const bignum_t a,const int b)    
{    
    int c[12]=    
    {    
        1     
    }    
    ;    
    for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);    
    return comp(a,c);    
}    
     
int comp(const bignum_t a,const int c,const int d,const bignum_t b)    
{    
    int i,t=0,O=-DEPTH*2 ;    
    if(b[0]-a[0]<d&&c)    
    return 1 ;    
    for(i=b[0];i>d;i--)    
    {    
        t=t*DEPTH+a[i-d]*c-b[i];    
        if(t>0)return 1 ;    
        if(t<O)return 0 ;    
    }    
    for(i=d;i;i--)    
    {    
        t=t*DEPTH-b[i];    
        if(t>0)return 1 ;    
        if(t<O)return 0 ;    
    }    
    return t>0 ;    
}    
/************************************************************************/   
/* 大数与大数相加                                                       */   
/************************************************************************/   
void add(bignum_t a,const bignum_t b)    
{    
    int i ;    
    for(i=1;i<=b[0];i++)    
    if((a[i]+=b[i])>=DEPTH)    
    a[i]-=DEPTH,a[i+1]++;    
    if(b[0]>=a[0])    
    a[0]=b[0];    
    else    
    for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++);    
    a[0]+=(a[a[0]+1]>0);    
}    
/************************************************************************/   
/* 大数与小数相加                                                       */   
/************************************************************************/   
void add(bignum_t a,const int b)    
{    
    int i=1 ;    
    for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);    
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);    
}    
/************************************************************************/   
/* 大数相减(被减数>=减数)                                               */   
/************************************************************************/   
void sub(bignum_t a,const bignum_t b)    
{    
    int i ;    
    for(i=1;i<=b[0];i++)    
    if((a[i]-=b[i])<0)    
    a[i+1]--,a[i]+=DEPTH ;    
    for(;a[i]<0;a[i]+=DEPTH,a[i]--);    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
}    
/************************************************************************/   
/* 大数减去小数(被减数>=减数)                                           */   
/************************************************************************/   
void sub(bignum_t a,const int b)    
{    
    int i=1 ;    
    for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
}    
     
void sub(bignum_t a,const bignum_t b,const int d)    
{    
    int i,O=b[0]+d ;    
    for(i=1+d;i<=O;i++)    
    if((a[i]-=b[i-d]*c)<0)    
    a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ;    
    for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,i++);    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
}    
/************************************************************************/   
/* 大数相乘,读入被乘数a,乘数b,结果保存在c[]                          */   
/************************************************************************/   
void mul(bignum_t c,const bignum_t a,j ;    
    memset((void*)c,sizeof(bignum_t));    
    for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++)    
    for(j=1;j<=b[0];j++)    
    if((c[i+j-1]+=a[i]*b[j])>=DEPTH)    
    c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ;    
    for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);    
}    
/************************************************************************/   
/* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数                   */   
/************************************************************************/   
void mul(bignum_t a,const int b)    
{    
    int i ;    
    for(a[1]*=b,i=2;i<=a[0];i++)    
    {    
        a[i]*=b ;    
        if(a[i-1]>=DEPTH)    
        a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ;    
    }    
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[0]++);    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
}    
     
void mul(bignum_t b,const int d)    
{    
    int i ;    
    memset((void*)b,sizeof(bignum_t));    
    for(b[0]=a[0]+d,i=d+1;i<=b[0];i++)    
    if((b[i]+=a[i-d]*c)>=DEPTH)    
    b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ;    
    for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);    
    for(;!b[b[0]]&&b[0]>1;b[0]--);    
}    
/**************************************************************************/   
/* 大数相除,读入被除数a,除数b,结果保存在c[]数组                         */   
/* 需要comp()函数                                                         */   
/**************************************************************************/   
void div(bignum_t c,bignum_t a,const bignum_t b)    
{    
    int h,l,m,i ;    
    memset((void*)c,sizeof(bignum_t));    
    c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ;    
    for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--)    
    for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1)    
    if(comp(b,i-1,a))h=m-1 ;    
    else l=m ;    
    for(;!c[c[0]]&&c[0]>1;c[0]--);    
    c[0]=c[0]>1?c[0]:1 ;    
}    
     
void div(bignum_t a,const int b,int&c)    
{    
    int i ;    
    for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
}    
/************************************************************************/   
/* 大数平方根,读入大数a,结果保存在b[]数组里                           */   
/* 需要comp()函数                                                       */   
/************************************************************************/   
void sqrt(bignum_t b,bignum_t a)    
{    
    int h,i ;    
    memset((void*)b,sizeof(bignum_t));    
    for(i=b[0]=(a[0]+1)>>1;i;sub(a,b[i]+=m,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1)    
    if(comp(b,a))h=m-1 ;    
    else l=m ;    
    for(;!b[b[0]]&&b[0]>1;b[0]--);    
    for(i=1;i<=b[0];b[i++]>>=1);    
}    
/************************************************************************/   
/* 返回大数的长度                                                       */   
/************************************************************************/   
int length(const bignum_t a)    
{    
    int t,ret ;    
    for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++);    
    return ret>0?ret:1 ;    
}    
/************************************************************************/   
/* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数               */   
/************************************************************************/   
int digit(const bignum_t a,const int b)    
{    
    int i,ret ;    
    for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--);    
    return ret%10 ;    
}    
/************************************************************************/   
/* 返回大数末尾0的个数                                                  */   
/************************************************************************/   
int zeronum(const bignum_t a)    
{    
    int ret,t ;    
    for(ret=0;!a[ret+1];ret++);    
    for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++);    
    return ret ;    
}    
     
void comp(int*a,const int l,const int h,j,t ;    
    for(i=l;i<=h;i++)    
    for(t=i,j=2;t>1;j++)    
    while(!(t%j))    
    a[j]+=d,t/=j ;    
}    
     
void convert(int*a,bignum_t b)    
{    
    int i,t=1 ;    
    memset(b,sizeof(bignum_t));    
    for(b[0]=b[1]=1,i=2;i<=h;i++)    
    if(a[i])    
    for(j=a[i];j;t*=i,j--)    
    if(t*i>DEPTH)    
    mul(b,t),t=1 ;    
    mul(b,t);    
}    
/************************************************************************/   
/* 组合数                                                               */   
/************************************************************************/   
void combination(bignum_t a,int m,int n)    
{    
    int*t=new int[m+1];    
    memset((void*)t,sizeof(int)*(m+1));    
    comp(t,n+1,1);    
    comp(t,2,m-n,-1);    
    convert(t,a);    
    delete[]t ;    
}    
/************************************************************************/   
/* 排列数                                                               */   
/************************************************************************/   
void permutation(bignum_t a,int n)    
{    
    int i,t=1 ;    
    memset(a,sizeof(bignum_t));    
    a[0]=a[1]=1 ;    
    for(i=m-n+1;i<=m;t*=i++)    
    if(t*i>DEPTH)    
    mul(a,t=1 ;    
    mul(a,t);    
}    
    
#define SGN(x) ((x)>0?1:((x)<0?-1:0))    
#define ABS(x) ((x)>0?(x):-(x))    
     
int read(bignum_t a,int&sgn,istream&is=cin)    
{    
    char str[MAX*DIGIT+2],ch,*buf ;    
    int i,sizeof(bignum_t));    
    if(!(is>>str))return 0 ;    
    buf=str,sgn=1 ;    
    if(*buf=='-')sgn=-1,buf++;    
    for(a[0]=strlen(buf),j=0;j<DIGIT;j++)    
    a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;    
    for(;!a[a[0]]&&a[0]>1;a[0]--);    
    if(a[0]==1&&!a[1])sgn=0 ;    
    return 1 ;    
}    
struct bignum     
{    
    bignum_t num ;    
    int sgn ;    
    public :    
    inline bignum()    
    {    
        memset(num,sizeof(bignum_t));    
        num[0]=1 ;    
        sgn=0 ;    
    }    
    inline int operator!()    
    {    
        return num[0]==1&&!num[1];    
    }    
    inline bignum&operator=(const bignum&a)    
    {    
        memcpy(num,a.num,sizeof(bignum_t));    
        sgn=a.sgn ;    
        return*this ;    
    }    
    inline bignum&operator=(const int a)    
    {    
        memset(num,sizeof(bignum_t));    
        num[0]=1 ;    
        sgn=SGN (a);    
        add(num,sgn*a);    
        return*this ;    
    }    
    ;    
    inline bignum&operator+=(const bignum&a)    
    {    
        if(sgn==a.sgn)add(num,a.num);    
        else if            
        (sgn&&a.sgn)    
        {    
            int ret=comp(num,a.num);    
            if(ret>0)sub(num,a.num);    
            else if(ret<0)    
            {    
                bignum_t t ;    
                memcpy(t,num,sizeof(bignum_t));    
                memcpy(num,sizeof(bignum_t));    
                sub (num,t);    
                sgn=a.sgn ;    
            }    
            else memset(num,sizeof(bignum_t)),num[0]=1,sgn=0 ;    
        }    
        else if(!sgn)    
            memcpy(num,sgn=a.sgn ;    
        return*this ;    
    }    
    inline bignum&operator+=(const int a)    
    {    
        if(sgn*a>0)add(num,ABS(a));    
        else if(sgn&&a)    
        {    
            int  ret=comp(num,ABS(a));    
            if(ret>0)sub(num,ABS(a));    
            else if(ret<0)    
            {    
                bignum_t t ;    
                memcpy(t,sizeof(bignum_t));    
                memset(num,sizeof(bignum_t));    
                num[0]=1 ;    
                add(num,ABS (a));    
                sgn=-sgn ;    
                sub(num,t);    
            }    
            else memset(num,sgn=0 ;    
        }    
        else if    
            (!sgn)sgn=SGN(a),add(num,ABS(a));    
        return*this ;    
    }    
    inline bignum operator+(const bignum&a)    
    {    
        bignum ret ;    
        memcpy(ret.num,sizeof (bignum_t));    
        ret.sgn=sgn ;    
        ret+=a ;    
        return ret ;    
    }    
    inline bignum operator+(const int a)    
    {    
        bignum ret ;    
        memcpy(ret.num,sizeof (bignum_t));    
        ret.sgn=sgn ;    
        ret+=a ;    
        return ret ;    
    }    
    inline bignum&operator-=(const bignum&a)    
    {    
        if(sgn*a.sgn<0)add(num,sizeof(bignum_t));    
                sub(num,t);    
                sgn=-sgn ;    
            }    
            else memset(num,sgn=0 ;    
        }    
        else if(!sgn)add (num,a.num),sgn=-a.sgn ;    
        return*this ;    
    }    
    inline bignum&operator-=(const int a)    
    {    
        if(sgn*a<0)add(num,ABS(a));    
                sub(num,sgn=0 ;    
        }    
        else if    
            (!sgn)sgn=-SGN(a),ABS(a));    
        return*this ;    
    }    
    inline bignum operator-(const bignum&a)    
    {    
        bignum ret ;    
        memcpy(ret.num,sizeof(bignum_t));    
        ret.sgn=sgn ;    
        ret-=a ;    
        return ret ;    
    }    
    inline bignum operator-(const int a)    
    {    
        bignum ret ;    
        memcpy(ret.num,sizeof(bignum_t));    
        ret.sgn=sgn ;    
        ret-=a ;    
        return ret ;    
    }    
    inline bignum&operator*=(const bignum&a)    
    {    
        bignum_t t ;    
        mul(t,a.num);    
        memcpy(num,t,sizeof(bignum_t));    
        sgn*=a.sgn ;    
        return*this ;    
    }    
    inline bignum&operator*=(const int a)    
    {    
        mul(num,ABS(a));    
        sgn*=SGN(a);    
        return*this ;    
    }    
    inline bignum operator*(const bignum&a)    
    {    
        bignum ret ;    
        mul(ret.num,a.num);    
        ret.sgn=sgn*a.sgn ;    
        return ret ;    
    }    
    inline bignum operator*(const int a)    
    {    
        bignum ret ;    
        memcpy(ret.num,sizeof (bignum_t));    
        mul(ret.num,ABS(a));    
        ret.sgn=sgn*SGN(a);    
        return ret ;    
    }    
    inline bignum&operator/=(const bignum&a)    
    {    
        bignum_t t ;    
        div(t,a.num);    
        memcpy (num,sizeof(bignum_t));    
        sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ;    
        return*this ;    
    }    
    inline bignum&operator/=(const int a)    
    {    
        int t ;    
        div(num,ABS(a),t);    
        sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a);    
        return*this ;    
    }    
    inline bignum operator/(const bignum&a)    
    {    
        bignum ret ;    
        bignum_t t ;    
        memcpy(t,sizeof(bignum_t));    
        div(ret.num,a.num);    
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ;    
        return ret ;    
    }    
    inline bignum operator/(const int a)    
    {    
        bignum ret ;    
        int t ;    
        memcpy(ret.num,t);    
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);    
        return ret ;    
    }    
    inline bignum&operator%=(const bignum&a)    
    {    
        bignum_t t ;    
        div(t,a.num);    
        if(num[0]==1&&!num[1])sgn=0 ;    
        return*this ;    
    }    
    inline int operator%=(const int a)    
    {    
        int t ;    
        div(num,t);    
        memset(num,sizeof (bignum_t));    
        num[0]=1 ;    
        add(num,t);    
        return t ;    
    }    
    inline bignum operator%(const bignum&a)    
    {    
        bignum ret ;    
        bignum_t t ;    
        memcpy(ret.num,sizeof(bignum_t));    
        div(t,ret.num,a.num);    
        ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ;    
        return ret ;    
    }    
    inline int operator%(const int a)    
    {    
        bignum ret ;    
        int t ;    
        memcpy(ret.num,t);    
        memset(ret.num,sizeof(bignum_t));    
        ret.num[0]=1 ;    
        add(ret.num,t);    
        return t ;    
    }    
    inline bignum&operator++()    
    {    
        *this+=1 ;    
        return*this ;    
    }    
    inline bignum&operator--()    
    {    
        *this-=1 ;    
        return*this ;    
    }    
    ;    
    inline int operator>(const bignum&a)    
    {    
        return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);    
    }    
    inline int operator>(const int a)    
    {    
        return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);    
    }    
    inline int operator>=(const bignum&a)    
    {    
        return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);    
    }    
    inline int operator>=(const int a)    
    {    
        return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);    
    }    
    inline int operator<(const bignum&a)    
    {    
        return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);    
    }    
    inline int operator<(const int a)    
    {    
        return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);    
    }    
    inline int operator<=(const bignum&a)    
    {    
        return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);    
    }    
    inline int operator<=(const int a)    
    {    
        return sgn<0?(a<0?comp(num,-a)>=0:1):    
        (sgn>0?(a>0?comp(num,a)<=0:0):a>=0);    
    }    
    inline int operator==(const bignum&a)    
    {    
        return(sgn==a.sgn)?!comp(num,a.num):0 ;    
    }    
    inline int operator==(const int a)    
    {    
        return(sgn*a>=0)?!comp(num,ABS(a)):0 ;    
    }    
    inline int operator!=(const bignum&a)    
    {    
        return(sgn==a.sgn)?comp(num,a.num):1 ;    
    }    
    inline int operator!=(const int a)    
    {    
        return(sgn*a>=0)?comp(num,ABS(a)):1 ;    
    }    
    inline int operator[](const int a)    
    {    
        return digit(num,a);    
    }    
    friend inline istream&operator>>(istream&is,bignum&a)    
    {    
        read(a.num,a.sgn,is);    
        return  is ;    
    }    
    friend inline ostream&operator<<(ostream&os,const bignum&a)    
    {    
        if(a.sgn<0)    
            os<<'-' ;    
        write(a.num,os);    
        return os ;    
    }    
    friend inline bignum sqrt(const bignum&a)    
    {    
        bignum ret ;    
        bignum_t t ;    
        memcpy(t,sizeof(bignum_t));    
        sqrt(ret.num,t);    
        ret.sgn=ret.num[0]!=1||ret.num[1];    
        return ret ;    
    }    
    friend inline bignum sqrt(const bignum&a,bignum&b)    
    {    
        bignum ret ;    
        memcpy(b.num,b.num);    
        ret.sgn=ret.num[0]!=1||ret.num[1];    
        b.sgn=b.num[0]!=1||ret.num[1];    
        return ret ;    
    }    
    inline int length()    
    {    
        return :: length(num);    
    }    
    inline int zeronum()    
    {    
        return :: zeronum(num);    
    }    
    inline bignum C(const int m,const int n)    
    {    
        combination(num,n);    
        sgn=1 ;    
        return*this ;    
    }    
    inline bignum P(const int m,const int n)    
    {    
        permutation(num,n);    
        sgn=1 ;    
        return*this ;    
    }    
};   
int main()    
{       
    bignum a,c;       
    cin>>a>>b;      
    cout<<"加法:"<<a+b<<endl;    
    cout<<"减法:"<<a-b<<endl;    
    cout<<"乘法:"<<a*b<<endl;    
    cout<<"除法:"<<a/b<<endl;       
    c=sqrt(a);    
    cout<<"平方根:"<<c<<endl;    
    cout<<"a的长度:"<<a.length()<<endl;    
    cout<<"a的末尾0个数:"<<a.zeronum()<<endl<<endl;    
    cout<<"组合: 从10个不同元素取3个元素组合的所有可能性为"<<c.C(10,3)<<endl;    
    cout<<"排列: 从10个不同元素取3个元素排列的所有可能性为"<<c.P(10,3)<<endl;    
    return 0 ;    
}   
?

模板二:

#include <cstdio>
#include <cstring>
#include <cstdlib>
//允许生成1120位(二进制)的中间结果
#define BI_MAXLEN 105
#define DEC 10
#define HEX 16

class CBigInt
{
public:
//大数在0x100000000进制下的长度    
    unsigned m_nLength;
//用数组记录大数在0x100000000进制下每一位的值
    unsigned long m_ulValue[BI_MAXLEN];

    CBigInt();
    ~CBigInt();

/*****************************************************************
基本操作与运算
Mov,赋值运算,可赋值为大数或普通整数,可重载为运算符“=”
Cmp,比较运算,可重载为运算符“==”、“!=”、“>=”、“<=”等
Add,加,求大数与大数或大数与普通整数的和,可重载为运算符“+”
Sub,减,求大数与大数或大数与普通整数的差,可重载为运算符“-”
Mul,乘,求大数与大数或大数与普通整数的积,可重载为运算符“*”
Div,除,求大数与大数或大数与普通整数的商,可重载为运算符“/”
Mod,模,求大数与大数或大数与普通整数的模,可重载为运算符“%”
*****************************************************************/
    void Mov(unsigned __int64 A);
    void Mov(CBigInt& A);
    CBigInt Add(CBigInt& A);
    CBigInt Sub(CBigInt& A);
    CBigInt Mul(CBigInt& A);
    CBigInt Div(CBigInt& A);
    CBigInt Mod(CBigInt& A);
    CBigInt Add(unsigned long A);
    CBigInt Sub(unsigned long A);
    CBigInt Mul(unsigned long A);
    CBigInt Div(unsigned long A);
    unsigned long Mod(unsigned long A); 
    int Cmp(CBigInt& A); 

/*****************************************************************
输入输出
Get,从字符串按10进制或16进制格式输入到大数
Put,将大数按10进制或16进制格式输出到字符串
*****************************************************************/
    void Get(char str[],unsigned int system=DEC);
    void Put(char str[],unsigned int system=DEC);

/*****************************************************************
RSA相关运算
Rab,拉宾米勒算法进行素数测试
Euc,欧几里德算法求解同余方程
RsaTrans,反复平方算法进行幂模运算
GetPrime,产生指定长度的随机大素数
*****************************************************************/
    int Rab();
    CBigInt Euc(CBigInt& A);
    CBigInt RsaTrans(CBigInt& A,CBigInt& B);
    void GetPrime(int bits);
};

//小素数表
const static int PrimeTable[550]=
{   3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001
};

//构造大数对象并初始化为零
CBigInt::CBigInt()
{
    m_nLength=1;
    for(int i=0;i<BI_MAXLEN;i++)m_ulValue[i]=0;
}

//解构大数对象
CBigInt::~CBigInt()
{
}

/****************************************************************************************
大数比较
调用方式:N.Cmp(A)
返回值:若N<A返回-1;若N=A返回0;若N>A返回1
****************************************************************************************/
int CBigInt::Cmp(CBigInt& A)
{
    if(m_nLength>A.m_nLength)return 1;
    if(m_nLength<A.m_nLength)return -1;
    for(int i=m_nLength-1;i>=0;i--)
    {
        if(m_ulValue[i]>A.m_ulValue[i])return 1;
        if(m_ulValue[i]<A.m_ulValue[i])return -1;
    }
    return 0;
}

/****************************************************************************************
大数赋值
调用方式:N.Mov(A)
返回值:无,N被赋值为A
****************************************************************************************/
void CBigInt::Mov(CBigInt& A)
{
    m_nLength=A.m_nLength;
    for(int i=0;i<BI_MAXLEN;i++)m_ulValue[i]=A.m_ulValue[i];
}

void CBigInt::Mov(unsigned __int64 A)
{
    if(A>0xffffffff)
    {
        m_nLength=2;
        m_ulValue[1]=(unsigned long)(A>>32);
        m_ulValue[0]=(unsigned long)A;
    }
    else
    {
        m_nLength=1;
        m_ulValue[0]=(unsigned long)A;
    }
    for(int i=m_nLength;i<BI_MAXLEN;i++)m_ulValue[i]=0;
}

/****************************************************************************************
大数相加
调用形式:N.Add(A)
返回值:N+A
****************************************************************************************/
CBigInt CBigInt::Add(CBigInt& A)
{
    CBigInt X;
    X.Mov(*this);
    unsigned carry=0;
    unsigned __int64 sum=0;
    if(X.m_nLength<A.m_nLength)X.m_nLength=A.m_nLength;
    for(unsigned i=0;i<X.m_nLength;i++)
    {
        sum=A.m_ulValue[i];
		sum=sum+X.m_ulValue[i]+carry;
        X.m_ulValue[i]=(unsigned long)sum;
        carry=(unsigned)(sum>>32);
    }
    X.m_ulValue[X.m_nLength]=carry;
    X.m_nLength+=carry;
    return X;
}

CBigInt CBigInt::Add(unsigned long A)
{
    CBigInt X;
    X.Mov(*this);
    unsigned __int64 sum;
    sum=X.m_ulValue[0];
	sum+=A;
    X.m_ulValue[0]=(unsigned long)sum;
    if(sum>0xffffffff)
    {
        unsigned i=1;
        while(X.m_ulValue[i]==0xffffffff){X.m_ulValue[i]=0;i++;}
        X.m_ulValue[i]++;
        if(m_nLength==i)m_nLength++;
    }
    return X;
}

/****************************************************************************************
大数相减
调用形式:N.Sub(A)
返回值:N-A
****************************************************************************************/
CBigInt CBigInt::Sub(CBigInt& A)
{
    CBigInt X;
    X.Mov(*this);
    if(X.Cmp(A)<=0){X.Mov(0);return X;}
    unsigned carry=0;
    unsigned __int64 num;
	unsigned i;
    for(i=0;i<m_nLength;i++)
    {
        if((m_ulValue[i]>A.m_ulValue[i])||((m_ulValue[i]==A.m_ulValue[i])&&(carry==0)))
        {
            X.m_ulValue[i]=m_ulValue[i]-carry-A.m_ulValue[i];
            carry=0;
        }
        else
        {
            num=0x100000000+m_ulValue[i];
            X.m_ulValue[i]=(unsigned long)(num-carry-A.m_ulValue[i]);
            carry=1;
        }
    }
    while(X.m_ulValue[X.m_nLength-1]==0)X.m_nLength--;
    return X;
}

CBigInt CBigInt::Sub(unsigned long A)
{
    CBigInt X;
    X.Mov(*this);
    if(X.m_ulValue[0]>=A){X.m_ulValue[0]-=A;return X;}
    if(X.m_nLength==1){X.Mov(0);return X;}
    unsigned __int64 num=0x100000000+X.m_ulValue[0];
    X.m_ulValue[0]=(unsigned long)(num-A);
    int i=1;
    while(X.m_ulValue[i]==0){X.m_ulValue[i]=0xffffffff;i++;}
    X.m_ulValue[i]--;
    if(X.m_ulValue[i]==0)X.m_nLength--;
    return X;
}

/****************************************************************************************
大数相乘
调用形式:N.Mul(A)
返回值:N*A
****************************************************************************************/
CBigInt CBigInt::Mul(CBigInt& A)
{
    if(A.m_nLength==1)return Mul(A.m_ulValue[0]);
	CBigInt X;
	unsigned __int64 sum,mul=0,carry=0;
	unsigned i,j;
	X.m_nLength=m_nLength+A.m_nLength-1;
    for(i=0;i<X.m_nLength;i++)
	{
		sum=carry;
		carry=0;
		for(j=0;j<A.m_nLength;j++)
		{
            if(((i-j)>=0)&&((i-j)<m_nLength))
			{
				mul=m_ulValue[i-j];
				mul*=A.m_ulValue[j];
			    carry+=mul>>32;
				mul=mul&0xffffffff;
				sum+=mul;
			}
        }
		carry+=sum>>32;
		X.m_ulValue[i]=(unsigned long)sum;
	}
	if(carry){X.m_nLength++;X.m_ulValue[X.m_nLength-1]=(unsigned long)carry;}
    return X;
}

CBigInt CBigInt::Mul(unsigned long A)
{
    CBigInt X;
    unsigned __int64 mul;
    unsigned long carry=0;
    X.Mov(*this);
    for(unsigned i=0;i<m_nLength;i++)
    {
        mul=m_ulValue[i];
        mul=mul*A+carry;
        X.m_ulValue[i]=(unsigned long)mul;
        carry=(unsigned long)(mul>>32);
    }
    if(carry){X.m_nLength++;X.m_ulValue[X.m_nLength-1]=carry;}
    return X;
}

/****************************************************************************************
大数相除
调用形式:N.Div(A)
返回值:N/A
****************************************************************************************/
CBigInt CBigInt::Div(CBigInt& A)
{
    if(A.m_nLength==1)return Div(A.m_ulValue[0]);
    CBigInt X,Y,Z;
    unsigned i,len;
    unsigned __int64 num,div;
    Y.Mov(*this);
    while(Y.Cmp(A)>=0)
    {       
		div=Y.m_ulValue[Y.m_nLength-1];
		num=A.m_ulValue[A.m_nLength-1];
		len=Y.m_nLength-A.m_nLength;
		if((div==num)&&(len==0)){X.Mov(X.Add(1));break;}
		if((div<=num)&&len){len--;div=(div<<32)+Y.m_ulValue[Y.m_nLength-2];}
		div=div/(num+1);
		Z.Mov(div);
		if(len)
		{
			Z.m_nLength+=len;
			for(i=Z.m_nLength-1;i>=len;i--)Z.m_ulValue[i]=Z.m_ulValue[i-len];
			for(i=0;i<len;i++)Z.m_ulValue[i]=0;
		}
		X.Mov(X.Add(Z));
        Y.Mov(Y.Sub(A.Mul(Z)));
    }
    return X;
}

CBigInt CBigInt::Div(unsigned long A)
{
    CBigInt X;
    X.Mov(*this);
    if(X.m_nLength==1){X.m_ulValue[0]=X.m_ulValue[0]/A;return X;}
    unsigned __int64 div,mul;
    unsigned long carry=0;
    for(int i=X.m_nLength-1;i>=0;i--)
    {
        div=carry;
        div=(div<<32)+X.m_ulValue[i];
        X.m_ulValue[i]=(unsigned long)(div/A);
        mul=(div/A)*A;
        carry=(unsigned long)(div-mul);
    }
    if(X.m_ulValue[X.m_nLength-1]==0)X.m_nLength--;
    return X;
}

/****************************************************************************************
大数求模
调用形式:N.Mod(A)
返回值:N%A
****************************************************************************************/
CBigInt CBigInt::Mod(CBigInt& A)
{
    CBigInt X,Y;
	unsigned __int64 div,num;
    unsigned long carry=0;
	unsigned i,len;
    X.Mov(*this);
    while(X.Cmp(A)>=0)
    {
		div=X.m_ulValue[X.m_nLength-1];
		num=A.m_ulValue[A.m_nLength-1];
		len=X.m_nLength-A.m_nLength;
		if((div==num)&&(len==0)){X.Mov(X.Sub(A));break;}
		if((div<=num)&&len){len--;div=(div<<32)+X.m_ulValue[X.m_nLength-2];}
		div=div/(num+1);
		Y.Mov(div);
		Y.Mov(A.Mul(Y));
		if(len)
		{
			Y.m_nLength+=len;
			for(i=Y.m_nLength-1;i>=len;i--)Y.m_ulValue[i]=Y.m_ulValue[i-len];
			for(i=0;i<len;i++)Y.m_ulValue[i]=0;
		}
        X.Mov(X.Sub(Y));
    }
    return X;
}

unsigned long CBigInt::Mod(unsigned long A)
{
    if(m_nLength==1)return(m_ulValue[0]%A);
    unsigned __int64 div;
    unsigned long carry=0;
    for(int i=m_nLength-1;i>=0;i--)
    {
        div=m_ulValue[i];
		div+=carry*0x100000000;
        carry=(unsigned long)(div%A);
    }
    return carry;
}

/****************************************************************************************
从字符串按10进制或16进制格式输入到大数
调用格式:N.Get(str,sys)
返回值:N被赋值为相应大数
sys暂时只能为10或16
****************************************************************************************/
void CBigInt::Get(char str[],unsigned int system)
{
    int len=strlen(str),k;
    Mov(0);
    for(int i=0;i<len;i++)
    {
       Mov(Mul(system));
       if((str[i]>='0')&&(str[i]<='9'))k=str[i]-48;
       else if((str[i]>='A')&&(str[i]<='F'))k=str[i]-55;
       else if((str[i]>='a')&&(str[i]<='f'))k=str[i]-87;
       else k=0;
       Mov(Add(k));
    }
}

/****************************************************************************************
将大数按10进制或16进制格式输出为字符串
调用格式:N.Put(str,sys)
返回值:无,参数str被赋值为N的sys进制字符串
sys暂时只能为10或16
****************************************************************************************/
void CBigInt::Put(char str[],unsigned int system)
{
    if((m_nLength==1)&&(m_ulValue[0]==0)){str="0";return;}
    char t[]="0123456789ABCDEF";
    int a;
    char ch;
    CBigInt X;
    X.Mov(*this);
	int i = 0;
    while(X.m_ulValue[X.m_nLength-1]>0)
    {
        a=X.Mod(system);
        ch=t[a];
        str[i++] = ch;
        X.Mov(X.Div(system));
    }
	str[i] = 0x00;
	
	int len = strlen(str) - 1;
	int half_len = strlen(str) / 2;
	char tmp;
	for (i = 0; i<half_len; i++)
	{
		tmp = str[i];
		str[i] = str[len-i];
		str[len-i] = tmp;
	}
}

/****************************************************************************************
求不定方程ax-by=1的最小整数解
调用方式:N.Euc(A)
返回值:X,满足:NX mod A=1
****************************************************************************************/
CBigInt CBigInt::Euc(CBigInt& A)
{
	CBigInt M,E,X,I,J;
    int x,y;
	M.Mov(A);
	E.Mov(*this);
	X.Mov(0);
	Y.Mov(1);
	x=y=1;
	while((E.m_nLength!=1)||(E.m_ulValue[0]!=0))
	{
		I.Mov(M.Div(E));
		J.Mov(M.Mod(E));
		M.Mov(E);
		E.Mov(J);
		J.Mov(Y);
		Y.Mov(Y.Mul(I));
		if(x==y)
		{
		    if(X.Cmp(Y)>=0)Y.Mov(X.Sub(Y));
			else{Y.Mov(Y.Sub(X));y=0;}
		}
		else{Y.Mov(X.Add(Y));x=1-x;y=1-y;}
		X.Mov(J);
	}
	if(x==0)X.Mov(A.Sub(X));
	return X;
}

/****************************************************************************************
求乘方的模
调用方式:N.RsaTrans(A,B)
返回值:X=N^A MOD B
****************************************************************************************/
CBigInt CBigInt::RsaTrans(CBigInt& A,CBigInt& B)
{
    CBigInt X,Y;
	int i,k;
	unsigned n;
	unsigned long num;
	k=A.m_nLength*32-32;
	num=A.m_ulValue[A.m_nLength-1];
	while(num){num=num>>1;k++;}
	X.Mov(*this);
	for(i=k-2;i>=0;i--)
	{
		Y.Mov(X.Mul(X.m_ulValue[X.m_nLength-1]));
		Y.Mov(Y.Mod(B));
        for(n=1;n<X.m_nLength;n++)
		{          
			for(j=Y.m_nLength;j>0;j--)Y.m_ulValue[j]=Y.m_ulValue[j-1];
			Y.m_ulValue[0]=0;
			Y.m_nLength++;
			Y.Mov(Y.Add(X.Mul(X.m_ulValue[X.m_nLength-n-1])));
			Y.Mov(Y.Mod(B));
		}
		X.Mov(Y);
		if((A.m_ulValue[i>>5]>>(i&31))&1)
		{
		    Y.Mov(Mul(X.m_ulValue[X.m_nLength-1]));
		    Y.Mov(Y.Mod(B));
            for(n=1;n<X.m_nLength;n++)
			{          
			    for(j=Y.m_nLength;j>0;j--)Y.m_ulValue[j]=Y.m_ulValue[j-1];
			    Y.m_ulValue[0]=0;
			    Y.m_nLength++;
			    Y.Mov(Y.Add(Mul(X.m_ulValue[X.m_nLength-n-1])));
			    Y.Mov(Y.Mod(B));
			}
		    X.Mov(Y);
		}
	}
    return X;
}

/****************************************************************************************
拉宾米勒算法测试素数
调用方式:N.Rab()
返回值:若N为素数,返回1,否则返回0
****************************************************************************************/
int CBigInt::Rab()
{
    unsigned i,pass;
    for(i=0;i<550;i++){if(Mod(PrimeTable[i])==0)return 0;}
    CBigInt S,A,K;
    K.Mov(*this);
	K.m_ulValue[0]--;
    for(i=0;i<5;i++)
    {
        pass=0;
        A.Mov(rand()*rand());
		S.Mov(K);
        while((S.m_ulValue[0]&1)==0)
		{
            for(j=0;j<S.m_nLength;j++)
			{
			    S.m_ulValue[j]=S.m_ulValue[j]>>1;
			    if(S.m_ulValue[j+1]&1)S.m_ulValue[j]=S.m_ulValue[j]|0x80000000;
			}
		    if(S.m_ulValue[S.m_nLength-1]==0)S.m_nLength--;
			I.Mov(A.RsaTrans(S,*this));
			if(I.Cmp(K)==0){pass=1;break;}
		}
		if((I.m_nLength==1)&&(I.m_ulValue[0]==1))pass=1;
		if(pass==0)return 0;
	}
    return 1;
}

/****************************************************************************************
产生随机素数
调用方法:N.GetPrime(bits)
返回值:N被赋值为一个bits位(0x100000000进制长度)的素数
****************************************************************************************/
void CBigInt::GetPrime(int bits)
{
    unsigned i;
    m_nLength=bits;
begin:
	for(i=0;i<m_nLength;i++)m_ulValue[i]=rand()*0x10000+rand();
    m_ulValue[0]=m_ulValue[0]|1;
	for(i=m_nLength-1;i>0;i--)
	{
		m_ulValue[i]=m_ulValue[i]<<1;
		if(m_ulValue[i-1]&0x80000000)m_ulValue[i]++;
	}
	m_ulValue[0]=m_ulValue[0]<<1;
	m_ulValue[0]++;
    for(i=0;i<550;i++){if(Mod(PrimeTable[i])==0)goto begin;}
    CBigInt S,K;
    K.Mov(*this);
	K.m_ulValue[0]--;
    for(i=0;i<5;i++)
	{
        A.Mov(rand()*rand());
	    S.Mov(K.Div(2));
	    I.Mov(A.RsaTrans(S,*this));
	    if(((I.m_nLength!=1)||(I.m_ulValue[0]!=1))&&(I.Cmp(K)!=0))goto begin;
	}
}

int main()
{
	int t;
	int i,j;
	CBigInt big_a,big_b,big_ans;
	char ans[2005],a[1005],b[1005];
	while (scanf("%d",&t) != EOF)
	{
		for (i = 0; i<t; i++)
		{
			if (i != 0)
				printf("/n");
			scanf("%s%s",a,b);
			big_a.Get(a);
			big_b.Get(b);
			big_ans = big_a.Add(big_b);
			big_ans.Put(ans);
			printf("Case %d:/n%s + %s = %s/n",i+1,ans);
		}
	}
	return 0;
}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读