大数模板
发布时间:2020-12-14 03:03:46 所属栏目:大数据 来源:网络整理
导读:要好好研究一下。。。。。。。 模板一: #include iostream #include cstring using namespace std; #define DIGIT 4 //四位隔开,即万进制 #define DEPTH 10000 //万进制 #define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行 typedef int bignum_
要好好研究一下。。。。。。。 模板一: #include <iostream> #include <cstring> using namespace std; #define DIGIT 4 //四位隔开,即万进制 #define DEPTH 10000 //万进制 #define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行 typedef int bignum_t[MAX+1]; /************************************************************************/ /* 读取操作数,对操作数进行处理存储在数组里 */ /************************************************************************/ int read(bignum_t a,istream&is=cin) { char buf[MAX*DIGIT+1],ch ; int i,j ; memset((void*)a,sizeof(bignum_t)); if(!(is>>buf))return 0 ; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); return 1 ; } void write(const bignum_t a,ostream&os=cout) { int i,j ; for(os<<a[i=a[0]],i--;i;i--) for(j=DEPTH/10;j;j/=10) os<<a[i]/j%10 ; } int comp(const bignum_t a,const bignum_t b) { int i ; if(a[0]!=b[0]) return a[0]-b[0]; for(i=a[0];i;i--) if(a[i]!=b[i]) return a[i]-b[i]; return 0 ; } int comp(const bignum_t a,const int b) { int c[12]= { 1 } ; for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c); } int comp(const bignum_t a,const int c,const int d,const bignum_t b) { int i,t=0,O=-DEPTH*2 ; if(b[0]-a[0]<d&&c) return 1 ; for(i=b[0];i>d;i--) { t=t*DEPTH+a[i-d]*c-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } for(i=d;i;i--) { t=t*DEPTH-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } return t>0 ; } /************************************************************************/ /* 大数与大数相加 */ /************************************************************************/ void add(bignum_t a,const bignum_t b) { int i ; for(i=1;i<=b[0];i++) if((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if(b[0]>=a[0]) a[0]=b[0]; else for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0); } /************************************************************************/ /* 大数与小数相加 */ /************************************************************************/ void add(bignum_t a,const int b) { int i=1 ; for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); } /************************************************************************/ /* 大数相减(被减数>=减数) */ /************************************************************************/ void sub(bignum_t a,const bignum_t b) { int i ; for(i=1;i<=b[0];i++) if((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH ; for(;a[i]<0;a[i]+=DEPTH,a[i]--); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数减去小数(被减数>=减数) */ /************************************************************************/ void sub(bignum_t a,const int b) { int i=1 ; for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const bignum_t b,const int d) { int i,O=b[0]+d ; for(i=1+d;i<=O;i++) if((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ; for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数相乘,读入被乘数a,乘数b,结果保存在c[] */ /************************************************************************/ void mul(bignum_t c,const bignum_t a,j ; memset((void*)c,sizeof(bignum_t)); for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for(j=1;j<=b[0];j++) if((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ; for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--); } /************************************************************************/ /* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数 */ /************************************************************************/ void mul(bignum_t a,const int b) { int i ; for(a[1]*=b,i=2;i<=a[0];i++) { a[i]*=b ; if(a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ; } for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[0]++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t b,const int d) { int i ; memset((void*)b,sizeof(bignum_t)); for(b[0]=a[0]+d,i=d+1;i<=b[0];i++) if((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ; for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for(;!b[b[0]]&&b[0]>1;b[0]--); } /**************************************************************************/ /* 大数相除,读入被除数a,除数b,结果保存在c[]数组 */ /* 需要comp()函数 */ /**************************************************************************/ void div(bignum_t c,bignum_t a,const bignum_t b) { int h,l,m,i ; memset((void*)c,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ; for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if(comp(b,i-1,a))h=m-1 ; else l=m ; for(;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1 ; } void div(bignum_t a,const int b,int&c) { int i ; for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数平方根,读入大数a,结果保存在b[]数组里 */ /* 需要comp()函数 */ /************************************************************************/ void sqrt(bignum_t b,bignum_t a) { int h,i ; memset((void*)b,sizeof(bignum_t)); for(i=b[0]=(a[0]+1)>>1;i;sub(a,b[i]+=m,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if(comp(b,a))h=m-1 ; else l=m ; for(;!b[b[0]]&&b[0]>1;b[0]--); for(i=1;i<=b[0];b[i++]>>=1); } /************************************************************************/ /* 返回大数的长度 */ /************************************************************************/ int length(const bignum_t a) { int t,ret ; for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1 ; } /************************************************************************/ /* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数 */ /************************************************************************/ int digit(const bignum_t a,const int b) { int i,ret ; for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret%10 ; } /************************************************************************/ /* 返回大数末尾0的个数 */ /************************************************************************/ int zeronum(const bignum_t a) { int ret,t ; for(ret=0;!a[ret+1];ret++); for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++); return ret ; } void comp(int*a,const int l,const int h,j,t ; for(i=l;i<=h;i++) for(t=i,j=2;t>1;j++) while(!(t%j)) a[j]+=d,t/=j ; } void convert(int*a,bignum_t b) { int i,t=1 ; memset(b,sizeof(bignum_t)); for(b[0]=b[1]=1,i=2;i<=h;i++) if(a[i]) for(j=a[i];j;t*=i,j--) if(t*i>DEPTH) mul(b,t),t=1 ; mul(b,t); } /************************************************************************/ /* 组合数 */ /************************************************************************/ void combination(bignum_t a,int m,int n) { int*t=new int[m+1]; memset((void*)t,sizeof(int)*(m+1)); comp(t,n+1,1); comp(t,2,m-n,-1); convert(t,a); delete[]t ; } /************************************************************************/ /* 排列数 */ /************************************************************************/ void permutation(bignum_t a,int n) { int i,t=1 ; memset(a,sizeof(bignum_t)); a[0]=a[1]=1 ; for(i=m-n+1;i<=m;t*=i++) if(t*i>DEPTH) mul(a,t=1 ; mul(a,t); } #define SGN(x) ((x)>0?1:((x)<0?-1:0)) #define ABS(x) ((x)>0?(x):-(x)) int read(bignum_t a,int&sgn,istream&is=cin) { char str[MAX*DIGIT+2],ch,*buf ; int i,sizeof(bignum_t)); if(!(is>>str))return 0 ; buf=str,sgn=1 ; if(*buf=='-')sgn=-1,buf++; for(a[0]=strlen(buf),j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); if(a[0]==1&&!a[1])sgn=0 ; return 1 ; } struct bignum { bignum_t num ; int sgn ; public : inline bignum() { memset(num,sizeof(bignum_t)); num[0]=1 ; sgn=0 ; } inline int operator!() { return num[0]==1&&!num[1]; } inline bignum&operator=(const bignum&a) { memcpy(num,a.num,sizeof(bignum_t)); sgn=a.sgn ; return*this ; } inline bignum&operator=(const int a) { memset(num,sizeof(bignum_t)); num[0]=1 ; sgn=SGN (a); add(num,sgn*a); return*this ; } ; inline bignum&operator+=(const bignum&a) { if(sgn==a.sgn)add(num,a.num); else if (sgn&&a.sgn) { int ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memcpy(num,sizeof(bignum_t)); sub (num,t); sgn=a.sgn ; } else memset(num,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn) memcpy(num,sgn=a.sgn ; return*this ; } inline bignum&operator+=(const int a) { if(sgn*a>0)add(num,ABS(a)); else if(sgn&&a) { int ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t ; memcpy(t,sizeof(bignum_t)); memset(num,sizeof(bignum_t)); num[0]=1 ; add(num,ABS (a)); sgn=-sgn ; sub(num,t); } else memset(num,sgn=0 ; } else if (!sgn)sgn=SGN(a),add(num,ABS(a)); return*this ; } inline bignum operator+(const bignum&a) { bignum ret ; memcpy(ret.num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum operator+(const int a) { bignum ret ; memcpy(ret.num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum&operator-=(const bignum&a) { if(sgn*a.sgn<0)add(num,sizeof(bignum_t)); sub(num,t); sgn=-sgn ; } else memset(num,sgn=0 ; } else if(!sgn)add (num,a.num),sgn=-a.sgn ; return*this ; } inline bignum&operator-=(const int a) { if(sgn*a<0)add(num,ABS(a)); sub(num,sgn=0 ; } else if (!sgn)sgn=-SGN(a),ABS(a)); return*this ; } inline bignum operator-(const bignum&a) { bignum ret ; memcpy(ret.num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum operator-(const int a) { bignum ret ; memcpy(ret.num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum&operator*=(const bignum&a) { bignum_t t ; mul(t,a.num); memcpy(num,t,sizeof(bignum_t)); sgn*=a.sgn ; return*this ; } inline bignum&operator*=(const int a) { mul(num,ABS(a)); sgn*=SGN(a); return*this ; } inline bignum operator*(const bignum&a) { bignum ret ; mul(ret.num,a.num); ret.sgn=sgn*a.sgn ; return ret ; } inline bignum operator*(const int a) { bignum ret ; memcpy(ret.num,sizeof (bignum_t)); mul(ret.num,ABS(a)); ret.sgn=sgn*SGN(a); return ret ; } inline bignum&operator/=(const bignum&a) { bignum_t t ; div(t,a.num); memcpy (num,sizeof(bignum_t)); sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ; return*this ; } inline bignum&operator/=(const int a) { int t ; div(num,ABS(a),t); sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a); return*this ; } inline bignum operator/(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,sizeof(bignum_t)); div(ret.num,a.num); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ; return ret ; } inline bignum operator/(const int a) { bignum ret ; int t ; memcpy(ret.num,t); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a); return ret ; } inline bignum&operator%=(const bignum&a) { bignum_t t ; div(t,a.num); if(num[0]==1&&!num[1])sgn=0 ; return*this ; } inline int operator%=(const int a) { int t ; div(num,t); memset(num,sizeof (bignum_t)); num[0]=1 ; add(num,t); return t ; } inline bignum operator%(const bignum&a) { bignum ret ; bignum_t t ; memcpy(ret.num,sizeof(bignum_t)); div(t,ret.num,a.num); ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ; return ret ; } inline int operator%(const int a) { bignum ret ; int t ; memcpy(ret.num,t); memset(ret.num,sizeof(bignum_t)); ret.num[0]=1 ; add(ret.num,t); return t ; } inline bignum&operator++() { *this+=1 ; return*this ; } inline bignum&operator--() { *this-=1 ; return*this ; } ; inline int operator>(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0); } inline int operator>(const int a) { return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0); } inline int operator>=(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0); } inline int operator>=(const int a) { return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0); } inline int operator<(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0); } inline int operator<(const int a) { return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0); } inline int operator<=(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0); } inline int operator<=(const int a) { return sgn<0?(a<0?comp(num,-a)>=0:1): (sgn>0?(a>0?comp(num,a)<=0:0):a>=0); } inline int operator==(const bignum&a) { return(sgn==a.sgn)?!comp(num,a.num):0 ; } inline int operator==(const int a) { return(sgn*a>=0)?!comp(num,ABS(a)):0 ; } inline int operator!=(const bignum&a) { return(sgn==a.sgn)?comp(num,a.num):1 ; } inline int operator!=(const int a) { return(sgn*a>=0)?comp(num,ABS(a)):1 ; } inline int operator[](const int a) { return digit(num,a); } friend inline istream&operator>>(istream&is,bignum&a) { read(a.num,a.sgn,is); return is ; } friend inline ostream&operator<<(ostream&os,const bignum&a) { if(a.sgn<0) os<<'-' ; write(a.num,os); return os ; } friend inline bignum sqrt(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,sizeof(bignum_t)); sqrt(ret.num,t); ret.sgn=ret.num[0]!=1||ret.num[1]; return ret ; } friend inline bignum sqrt(const bignum&a,bignum&b) { bignum ret ; memcpy(b.num,b.num); ret.sgn=ret.num[0]!=1||ret.num[1]; b.sgn=b.num[0]!=1||ret.num[1]; return ret ; } inline int length() { return :: length(num); } inline int zeronum() { return :: zeronum(num); } inline bignum C(const int m,const int n) { combination(num,n); sgn=1 ; return*this ; } inline bignum P(const int m,const int n) { permutation(num,n); sgn=1 ; return*this ; } }; int main() { bignum a,c; cin>>a>>b; cout<<"加法:"<<a+b<<endl; cout<<"减法:"<<a-b<<endl; cout<<"乘法:"<<a*b<<endl; cout<<"除法:"<<a/b<<endl; c=sqrt(a); cout<<"平方根:"<<c<<endl; cout<<"a的长度:"<<a.length()<<endl; cout<<"a的末尾0个数:"<<a.zeronum()<<endl<<endl; cout<<"组合: 从10个不同元素取3个元素组合的所有可能性为"<<c.C(10,3)<<endl; cout<<"排列: 从10个不同元素取3个元素排列的所有可能性为"<<c.P(10,3)<<endl; return 0 ; }? 模板二: #include <cstdio> #include <cstring> #include <cstdlib> //允许生成1120位(二进制)的中间结果 #define BI_MAXLEN 105 #define DEC 10 #define HEX 16 class CBigInt { public: //大数在0x100000000进制下的长度 unsigned m_nLength; //用数组记录大数在0x100000000进制下每一位的值 unsigned long m_ulValue[BI_MAXLEN]; CBigInt(); ~CBigInt(); /***************************************************************** 基本操作与运算 Mov,赋值运算,可赋值为大数或普通整数,可重载为运算符“=” Cmp,比较运算,可重载为运算符“==”、“!=”、“>=”、“<=”等 Add,加,求大数与大数或大数与普通整数的和,可重载为运算符“+” Sub,减,求大数与大数或大数与普通整数的差,可重载为运算符“-” Mul,乘,求大数与大数或大数与普通整数的积,可重载为运算符“*” Div,除,求大数与大数或大数与普通整数的商,可重载为运算符“/” Mod,模,求大数与大数或大数与普通整数的模,可重载为运算符“%” *****************************************************************/ void Mov(unsigned __int64 A); void Mov(CBigInt& A); CBigInt Add(CBigInt& A); CBigInt Sub(CBigInt& A); CBigInt Mul(CBigInt& A); CBigInt Div(CBigInt& A); CBigInt Mod(CBigInt& A); CBigInt Add(unsigned long A); CBigInt Sub(unsigned long A); CBigInt Mul(unsigned long A); CBigInt Div(unsigned long A); unsigned long Mod(unsigned long A); int Cmp(CBigInt& A); /***************************************************************** 输入输出 Get,从字符串按10进制或16进制格式输入到大数 Put,将大数按10进制或16进制格式输出到字符串 *****************************************************************/ void Get(char str[],unsigned int system=DEC); void Put(char str[],unsigned int system=DEC); /***************************************************************** RSA相关运算 Rab,拉宾米勒算法进行素数测试 Euc,欧几里德算法求解同余方程 RsaTrans,反复平方算法进行幂模运算 GetPrime,产生指定长度的随机大素数 *****************************************************************/ int Rab(); CBigInt Euc(CBigInt& A); CBigInt RsaTrans(CBigInt& A,CBigInt& B); void GetPrime(int bits); }; //小素数表 const static int PrimeTable[550]= { 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001 }; //构造大数对象并初始化为零 CBigInt::CBigInt() { m_nLength=1; for(int i=0;i<BI_MAXLEN;i++)m_ulValue[i]=0; } //解构大数对象 CBigInt::~CBigInt() { } /**************************************************************************************** 大数比较 调用方式:N.Cmp(A) 返回值:若N<A返回-1;若N=A返回0;若N>A返回1 ****************************************************************************************/ int CBigInt::Cmp(CBigInt& A) { if(m_nLength>A.m_nLength)return 1; if(m_nLength<A.m_nLength)return -1; for(int i=m_nLength-1;i>=0;i--) { if(m_ulValue[i]>A.m_ulValue[i])return 1; if(m_ulValue[i]<A.m_ulValue[i])return -1; } return 0; } /**************************************************************************************** 大数赋值 调用方式:N.Mov(A) 返回值:无,N被赋值为A ****************************************************************************************/ void CBigInt::Mov(CBigInt& A) { m_nLength=A.m_nLength; for(int i=0;i<BI_MAXLEN;i++)m_ulValue[i]=A.m_ulValue[i]; } void CBigInt::Mov(unsigned __int64 A) { if(A>0xffffffff) { m_nLength=2; m_ulValue[1]=(unsigned long)(A>>32); m_ulValue[0]=(unsigned long)A; } else { m_nLength=1; m_ulValue[0]=(unsigned long)A; } for(int i=m_nLength;i<BI_MAXLEN;i++)m_ulValue[i]=0; } /**************************************************************************************** 大数相加 调用形式:N.Add(A) 返回值:N+A ****************************************************************************************/ CBigInt CBigInt::Add(CBigInt& A) { CBigInt X; X.Mov(*this); unsigned carry=0; unsigned __int64 sum=0; if(X.m_nLength<A.m_nLength)X.m_nLength=A.m_nLength; for(unsigned i=0;i<X.m_nLength;i++) { sum=A.m_ulValue[i]; sum=sum+X.m_ulValue[i]+carry; X.m_ulValue[i]=(unsigned long)sum; carry=(unsigned)(sum>>32); } X.m_ulValue[X.m_nLength]=carry; X.m_nLength+=carry; return X; } CBigInt CBigInt::Add(unsigned long A) { CBigInt X; X.Mov(*this); unsigned __int64 sum; sum=X.m_ulValue[0]; sum+=A; X.m_ulValue[0]=(unsigned long)sum; if(sum>0xffffffff) { unsigned i=1; while(X.m_ulValue[i]==0xffffffff){X.m_ulValue[i]=0;i++;} X.m_ulValue[i]++; if(m_nLength==i)m_nLength++; } return X; } /**************************************************************************************** 大数相减 调用形式:N.Sub(A) 返回值:N-A ****************************************************************************************/ CBigInt CBigInt::Sub(CBigInt& A) { CBigInt X; X.Mov(*this); if(X.Cmp(A)<=0){X.Mov(0);return X;} unsigned carry=0; unsigned __int64 num; unsigned i; for(i=0;i<m_nLength;i++) { if((m_ulValue[i]>A.m_ulValue[i])||((m_ulValue[i]==A.m_ulValue[i])&&(carry==0))) { X.m_ulValue[i]=m_ulValue[i]-carry-A.m_ulValue[i]; carry=0; } else { num=0x100000000+m_ulValue[i]; X.m_ulValue[i]=(unsigned long)(num-carry-A.m_ulValue[i]); carry=1; } } while(X.m_ulValue[X.m_nLength-1]==0)X.m_nLength--; return X; } CBigInt CBigInt::Sub(unsigned long A) { CBigInt X; X.Mov(*this); if(X.m_ulValue[0]>=A){X.m_ulValue[0]-=A;return X;} if(X.m_nLength==1){X.Mov(0);return X;} unsigned __int64 num=0x100000000+X.m_ulValue[0]; X.m_ulValue[0]=(unsigned long)(num-A); int i=1; while(X.m_ulValue[i]==0){X.m_ulValue[i]=0xffffffff;i++;} X.m_ulValue[i]--; if(X.m_ulValue[i]==0)X.m_nLength--; return X; } /**************************************************************************************** 大数相乘 调用形式:N.Mul(A) 返回值:N*A ****************************************************************************************/ CBigInt CBigInt::Mul(CBigInt& A) { if(A.m_nLength==1)return Mul(A.m_ulValue[0]); CBigInt X; unsigned __int64 sum,mul=0,carry=0; unsigned i,j; X.m_nLength=m_nLength+A.m_nLength-1; for(i=0;i<X.m_nLength;i++) { sum=carry; carry=0; for(j=0;j<A.m_nLength;j++) { if(((i-j)>=0)&&((i-j)<m_nLength)) { mul=m_ulValue[i-j]; mul*=A.m_ulValue[j]; carry+=mul>>32; mul=mul&0xffffffff; sum+=mul; } } carry+=sum>>32; X.m_ulValue[i]=(unsigned long)sum; } if(carry){X.m_nLength++;X.m_ulValue[X.m_nLength-1]=(unsigned long)carry;} return X; } CBigInt CBigInt::Mul(unsigned long A) { CBigInt X; unsigned __int64 mul; unsigned long carry=0; X.Mov(*this); for(unsigned i=0;i<m_nLength;i++) { mul=m_ulValue[i]; mul=mul*A+carry; X.m_ulValue[i]=(unsigned long)mul; carry=(unsigned long)(mul>>32); } if(carry){X.m_nLength++;X.m_ulValue[X.m_nLength-1]=carry;} return X; } /**************************************************************************************** 大数相除 调用形式:N.Div(A) 返回值:N/A ****************************************************************************************/ CBigInt CBigInt::Div(CBigInt& A) { if(A.m_nLength==1)return Div(A.m_ulValue[0]); CBigInt X,Y,Z; unsigned i,len; unsigned __int64 num,div; Y.Mov(*this); while(Y.Cmp(A)>=0) { div=Y.m_ulValue[Y.m_nLength-1]; num=A.m_ulValue[A.m_nLength-1]; len=Y.m_nLength-A.m_nLength; if((div==num)&&(len==0)){X.Mov(X.Add(1));break;} if((div<=num)&&len){len--;div=(div<<32)+Y.m_ulValue[Y.m_nLength-2];} div=div/(num+1); Z.Mov(div); if(len) { Z.m_nLength+=len; for(i=Z.m_nLength-1;i>=len;i--)Z.m_ulValue[i]=Z.m_ulValue[i-len]; for(i=0;i<len;i++)Z.m_ulValue[i]=0; } X.Mov(X.Add(Z)); Y.Mov(Y.Sub(A.Mul(Z))); } return X; } CBigInt CBigInt::Div(unsigned long A) { CBigInt X; X.Mov(*this); if(X.m_nLength==1){X.m_ulValue[0]=X.m_ulValue[0]/A;return X;} unsigned __int64 div,mul; unsigned long carry=0; for(int i=X.m_nLength-1;i>=0;i--) { div=carry; div=(div<<32)+X.m_ulValue[i]; X.m_ulValue[i]=(unsigned long)(div/A); mul=(div/A)*A; carry=(unsigned long)(div-mul); } if(X.m_ulValue[X.m_nLength-1]==0)X.m_nLength--; return X; } /**************************************************************************************** 大数求模 调用形式:N.Mod(A) 返回值:N%A ****************************************************************************************/ CBigInt CBigInt::Mod(CBigInt& A) { CBigInt X,Y; unsigned __int64 div,num; unsigned long carry=0; unsigned i,len; X.Mov(*this); while(X.Cmp(A)>=0) { div=X.m_ulValue[X.m_nLength-1]; num=A.m_ulValue[A.m_nLength-1]; len=X.m_nLength-A.m_nLength; if((div==num)&&(len==0)){X.Mov(X.Sub(A));break;} if((div<=num)&&len){len--;div=(div<<32)+X.m_ulValue[X.m_nLength-2];} div=div/(num+1); Y.Mov(div); Y.Mov(A.Mul(Y)); if(len) { Y.m_nLength+=len; for(i=Y.m_nLength-1;i>=len;i--)Y.m_ulValue[i]=Y.m_ulValue[i-len]; for(i=0;i<len;i++)Y.m_ulValue[i]=0; } X.Mov(X.Sub(Y)); } return X; } unsigned long CBigInt::Mod(unsigned long A) { if(m_nLength==1)return(m_ulValue[0]%A); unsigned __int64 div; unsigned long carry=0; for(int i=m_nLength-1;i>=0;i--) { div=m_ulValue[i]; div+=carry*0x100000000; carry=(unsigned long)(div%A); } return carry; } /**************************************************************************************** 从字符串按10进制或16进制格式输入到大数 调用格式:N.Get(str,sys) 返回值:N被赋值为相应大数 sys暂时只能为10或16 ****************************************************************************************/ void CBigInt::Get(char str[],unsigned int system) { int len=strlen(str),k; Mov(0); for(int i=0;i<len;i++) { Mov(Mul(system)); if((str[i]>='0')&&(str[i]<='9'))k=str[i]-48; else if((str[i]>='A')&&(str[i]<='F'))k=str[i]-55; else if((str[i]>='a')&&(str[i]<='f'))k=str[i]-87; else k=0; Mov(Add(k)); } } /**************************************************************************************** 将大数按10进制或16进制格式输出为字符串 调用格式:N.Put(str,sys) 返回值:无,参数str被赋值为N的sys进制字符串 sys暂时只能为10或16 ****************************************************************************************/ void CBigInt::Put(char str[],unsigned int system) { if((m_nLength==1)&&(m_ulValue[0]==0)){str="0";return;} char t[]="0123456789ABCDEF"; int a; char ch; CBigInt X; X.Mov(*this); int i = 0; while(X.m_ulValue[X.m_nLength-1]>0) { a=X.Mod(system); ch=t[a]; str[i++] = ch; X.Mov(X.Div(system)); } str[i] = 0x00; int len = strlen(str) - 1; int half_len = strlen(str) / 2; char tmp; for (i = 0; i<half_len; i++) { tmp = str[i]; str[i] = str[len-i]; str[len-i] = tmp; } } /**************************************************************************************** 求不定方程ax-by=1的最小整数解 调用方式:N.Euc(A) 返回值:X,满足:NX mod A=1 ****************************************************************************************/ CBigInt CBigInt::Euc(CBigInt& A) { CBigInt M,E,X,I,J; int x,y; M.Mov(A); E.Mov(*this); X.Mov(0); Y.Mov(1); x=y=1; while((E.m_nLength!=1)||(E.m_ulValue[0]!=0)) { I.Mov(M.Div(E)); J.Mov(M.Mod(E)); M.Mov(E); E.Mov(J); J.Mov(Y); Y.Mov(Y.Mul(I)); if(x==y) { if(X.Cmp(Y)>=0)Y.Mov(X.Sub(Y)); else{Y.Mov(Y.Sub(X));y=0;} } else{Y.Mov(X.Add(Y));x=1-x;y=1-y;} X.Mov(J); } if(x==0)X.Mov(A.Sub(X)); return X; } /**************************************************************************************** 求乘方的模 调用方式:N.RsaTrans(A,B) 返回值:X=N^A MOD B ****************************************************************************************/ CBigInt CBigInt::RsaTrans(CBigInt& A,CBigInt& B) { CBigInt X,Y; int i,k; unsigned n; unsigned long num; k=A.m_nLength*32-32; num=A.m_ulValue[A.m_nLength-1]; while(num){num=num>>1;k++;} X.Mov(*this); for(i=k-2;i>=0;i--) { Y.Mov(X.Mul(X.m_ulValue[X.m_nLength-1])); Y.Mov(Y.Mod(B)); for(n=1;n<X.m_nLength;n++) { for(j=Y.m_nLength;j>0;j--)Y.m_ulValue[j]=Y.m_ulValue[j-1]; Y.m_ulValue[0]=0; Y.m_nLength++; Y.Mov(Y.Add(X.Mul(X.m_ulValue[X.m_nLength-n-1]))); Y.Mov(Y.Mod(B)); } X.Mov(Y); if((A.m_ulValue[i>>5]>>(i&31))&1) { Y.Mov(Mul(X.m_ulValue[X.m_nLength-1])); Y.Mov(Y.Mod(B)); for(n=1;n<X.m_nLength;n++) { for(j=Y.m_nLength;j>0;j--)Y.m_ulValue[j]=Y.m_ulValue[j-1]; Y.m_ulValue[0]=0; Y.m_nLength++; Y.Mov(Y.Add(Mul(X.m_ulValue[X.m_nLength-n-1]))); Y.Mov(Y.Mod(B)); } X.Mov(Y); } } return X; } /**************************************************************************************** 拉宾米勒算法测试素数 调用方式:N.Rab() 返回值:若N为素数,返回1,否则返回0 ****************************************************************************************/ int CBigInt::Rab() { unsigned i,pass; for(i=0;i<550;i++){if(Mod(PrimeTable[i])==0)return 0;} CBigInt S,A,K; K.Mov(*this); K.m_ulValue[0]--; for(i=0;i<5;i++) { pass=0; A.Mov(rand()*rand()); S.Mov(K); while((S.m_ulValue[0]&1)==0) { for(j=0;j<S.m_nLength;j++) { S.m_ulValue[j]=S.m_ulValue[j]>>1; if(S.m_ulValue[j+1]&1)S.m_ulValue[j]=S.m_ulValue[j]|0x80000000; } if(S.m_ulValue[S.m_nLength-1]==0)S.m_nLength--; I.Mov(A.RsaTrans(S,*this)); if(I.Cmp(K)==0){pass=1;break;} } if((I.m_nLength==1)&&(I.m_ulValue[0]==1))pass=1; if(pass==0)return 0; } return 1; } /**************************************************************************************** 产生随机素数 调用方法:N.GetPrime(bits) 返回值:N被赋值为一个bits位(0x100000000进制长度)的素数 ****************************************************************************************/ void CBigInt::GetPrime(int bits) { unsigned i; m_nLength=bits; begin: for(i=0;i<m_nLength;i++)m_ulValue[i]=rand()*0x10000+rand(); m_ulValue[0]=m_ulValue[0]|1; for(i=m_nLength-1;i>0;i--) { m_ulValue[i]=m_ulValue[i]<<1; if(m_ulValue[i-1]&0x80000000)m_ulValue[i]++; } m_ulValue[0]=m_ulValue[0]<<1; m_ulValue[0]++; for(i=0;i<550;i++){if(Mod(PrimeTable[i])==0)goto begin;} CBigInt S,K; K.Mov(*this); K.m_ulValue[0]--; for(i=0;i<5;i++) { A.Mov(rand()*rand()); S.Mov(K.Div(2)); I.Mov(A.RsaTrans(S,*this)); if(((I.m_nLength!=1)||(I.m_ulValue[0]!=1))&&(I.Cmp(K)!=0))goto begin; } } int main() { int t; int i,j; CBigInt big_a,big_b,big_ans; char ans[2005],a[1005],b[1005]; while (scanf("%d",&t) != EOF) { for (i = 0; i<t; i++) { if (i != 0) printf("/n"); scanf("%s%s",a,b); big_a.Get(a); big_b.Get(b); big_ans = big_a.Add(big_b); big_ans.Put(ans); printf("Case %d:/n%s + %s = %s/n",i+1,ans); } } return 0; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |