hdu 1041(Computer Transformation)(找规律,二维数组大数)
发布时间:2020-12-14 02:58:59 所属栏目:大数据 来源:网络整理
导读:Computer Transformation Time Limit: 2000/1000 MS (Java/Others)????Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6025????Accepted Submission(s): 2193 Problem Description A sequence consisting of one digit,the number 1 is in
Computer Transformation
Time Limit: 2000/1000 MS (Java/Others)????Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6025????Accepted Submission(s): 2193
Problem Description
A sequence consisting of one digit,the number 1 is initially written into a computer. At each successive time step,the computer simultaneously tranforms each digit 0 into the sequence 1 0 and each digit 1 into the sequence 0 1. So,after the first time step,the sequence 0 1 is obtained; after the second,the sequence 1 0 0 1,after the third,the sequence 0 1 1 0 1 0 0 1 and so on.
How many pairs of consequitive zeroes will appear in the sequence after n steps?
?
Input
Every input line contains one natural number n (0 < n ≤1000).
?
Output
For each input n print the number of consecutive zeroes pairs that will appear in the sequence after n steps.
?
Sample Input
?
Sample Output
?
Source
Southeastern Europe 2005
思路:
/*本题规律题:
00只能由01推到,即01->1001->00 01只能由1,00推到,即1->01,00->1010->01. 现设a[n]表示n秒时1的个数, b[n]表示n秒时00的个数, c[n]表示n秒时01的个数, 由题知0,1过一秒都会产生一个1,? 所以a[n+1]=2^n.....0秒1个数,1秒2*1个数,2秒2*1*2个数,...n秒2*1*2*2*2..*2个数=2^n. b[n+1]=c[n]; c[n+1]=a[n]+b[n], 所以b[n]=c[n-1]=a[n-2]+b[n-2]=2^(n-3)+b[n-2]. 其实本题多写几个样例就能发现另一个规律b[n]=2*b[n-2]+b[n-1].? 注意本题大数相加. */(摘自该题后面的讨论区)
代码如下:
#include<stdio.h>
#define max 1010
int s[max][max/2]={{0},{0},{1},{1}};//i 表示多少位,j表示计算出的数字是多少位的
int p[max]={1};//计算2的相应的阶乘
void calculate()
{
for(int i=4;i<max-1;i++)
{
for(int c=0,j=0;j<=300;j++)//a[i]=2^(i-1)
{
p[j]=p[j]*2+c;
c=p[j]/10;
p[j]=p[j]%10;
}
for(int c=0,j=0;j<=300;j++)//b[i]=a[i-2]+b[i-2]
{
s[i][j]=p[j]+s[i-2][j]+c;
c=s[i][j]/10;
s[i][j]%=10;
}
}
}
int main()
{
int n;
calculate();//调用函数
while(~scanf("%d",&n))
{
int flag=0;//flag用来标记,并消除输出的前导零
if(n==1)
{
printf("0n");
}
else
{
for(int i=300;i>=0;i--)//倒序输出,消除前导零
{
if(s[n][i]||flag)
{
printf("%d",s[n][i]);
flag=1;
}
}
printf("n");
}
}
return 0;
}
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
