UVa 10883 - Supermean (杨辉三角 通过取对数解决大数除大数)
|
题意: 给出n个数,每相邻两个数求平均数,得到n-1个数,然后再继续这有求得到n-2个,一直到最后1个数。求这个数 手算一下就知道是二项式系数 ans = ∑C(n-1,i) / (2^(n-1)) 但是这里范围特别大,所以需要取对数来算 原理:e^log(e,a) = a?
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
//#define WIN
#ifdef WIN
typedef __int64 LL;
#define iform "%I64d"
#define oform "%I64dn"
#define oform1 "%I64d"
#else
typedef long long LL;
#define iform "%lld"
#define oform "%lldn"
#define oform1 "%lld"
#endif
#define S64I(a) scanf(iform,&(a))
#define P64I(a) printf(oform,(a))
#define P64I1(a) printf(oform1,(a))
#define REP(i,n) for(int (i)=0; (i)<n; (i)++)
#define REP1(i,n) for(int (i)=1; (i)<=(n); (i)++)
#define FOR(i,s,t) for(int (i)=(s); (i)<=(t); (i)++)
const int INF = 0x3f3f3f3f;
const double eps = 1e-9;
const double PI = (4.0*atan(1.0));
int main() {
int T;
scanf("%d",&T);
for(int kase=1; kase<=T; kase++) {
int n;
double lnc = 0;
double ans = 0;
scanf("%d",&n);
double ln2 = (n-1) * log(2.0);
for(int i=0; i<n; i++) {
double val;
scanf("%lf",&val);
if(val > 0) ans += exp(log(val) + lnc - ln2);
else ans -= exp(log(-val) + lnc - ln2);
lnc = lnc + log(n-i-1) - log(i+1);
}
printf("Case #%d: %.3lfn",kase,ans);
}
return 0;
}
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |

