R案例操作:RQDA和tm包结合进行文本挖掘
数据挖掘资料,点击底部"阅读原文",手慢无 应用定性数据分析包RQDA(Qualitative Data Analysis)和文挖掘框架包tm结合进行文本挖掘。 在对访谈内容或剧本、小说部分内容进行文本挖掘时,如果用不断的剪粘保存的方法非常繁琐而且容易漏掉一些内容。好在黄荣贵开发的RQDA包可以进行文档管理和内容编码及提取,大大方便了利用tm包进行文本挖掘,既提高了效率又提高了准确性,下面举一个小例子: 1、安装RQDA包、tm包和中文分词软件(分词软件见下面链接); 注:现在中文分词软件已经直接放到RQDAtm程序包中(https://r-forge.r-project.org/R/?group_id=137),不需要另外安装。 2、装载RQDA包并建立一个新的工程项目; 3、输入相关文本文件; 4、进行编码和作标记; 5、双击想要提取的编码即可提取相关文本; 6、运行下面下载的程序进行文本提取、转换、分词、文本挖掘工作。 > gg <- RQDA2tm("记者",mf = FALSE)
> gg
A corpus with 55 text documents
>
------------------------------------------------
> ### 去掉多余空格 ####> reuters <- tm_map(gg,stripWhitespace)
> reuters[[1]]
这个也是临时改的?这儿应该放一个那样的桌子。
>
------------------------------------------------
> ## 全文搜索 ##> searchFullText(gg[[1]],"是临[时]?改")
[1] TRUE>
------------------------------------------------
> ### 查找以某字开头、结尾等的词条 ###> stemCompletion(gg,c("财",68);">"政",68);">"部"))
财 政 部"财政部就是替政府花钱的" "" ""------------------------------------------------
> ### 元数据管理 ###> DublinCore(reuters[[2]],68);">"title") <- "建国60周年"> meta(reuters[[2]])
Available meta data pairs are:
Author :
DateTimeStamp: 2010-07-15 02:06:27
Description :
Heading : 建国60周年
ID : 2
Language : eng
Origin :
>
------------------------------------------------
> ### 创建词条-文件矩阵>
> dtm <- DocumentTermMatrix(reuters,control = list(minWordLength=2))##最短词两个字> inspect(dtm[1:2,3:6])
A document-term matrix (2 documents,153);">4 terms)
Non-/sparse entries: 0/8Sparsity : 100%
Maximal term length: 5Weighting : term frequency (tf)
Terms
Docs 10000 12 120 1966
1 0 0 0 0
2 0------------------------------------------------
> ## 操作词条-文件矩阵 ##> ## 1、找出最少出现过3次的词条 ##> findFreqTerms(dtm,153);">3)
[1] "政策"------------------------------------------------
> ## 2、找出与"应该"相关度到少达0.6的词条 ###> findAssocs(dtm,68);">"应该",153);">0.6)0.11 应该 桌子 临时1.0 0.7>
其他看上面的链接中的内容,其实生成词条-文件矩阵后还有许多工作可以做,比如用支持向量机进行文件分类、话题分类、根据话题用词频率分析作者所熟悉的行业等等…… 民网 >> 时政 >> 时政专题 >> 网友进言 http://politics.people.com.cn/GB/8198/138817/index.html MetaID fname fid 一、出现5次以上的词条 gg <- RQDA2tm("网友",mf = TRUE)
> findFreqTerms(dtm,153);">5)
["驾驶" "身份证" "问题"
—————————————————————————- gg <- RQDA2tm("公安部回应",68);">"办理" "部门" "公安" "管理" "规定" "机动车" "机关" "交通"[9] "安全" "不得" "车辆" "道路" "驾驶证" "汽车" "实施"[17] "使用" "小型" "营运" "载货" "载客" "证明" "工作" "法律"[25] "公民" "居民" "社会" "身份" "条件" "相关" "行为"[33] "证件" "措施" "违法" "应当" "公安部" "信息"
************************************************************** > findAssocs(dtm,68);">"驾驶",153);">0.7)
驾驶 公安部 能否 规定 驾照 汽车 1.00 0.87 0.80 0.79 0.78 0.72
—————————————————————————- > findAssocs(dtm,153);">0.7)
驾驶 需要 期限 证明 小型 法律 使用 中型 驾驶证 依法 检查 0.95 0.90 0.86 0.84 0.83 0.77 0.75
有效 超过 0.75 0.72
************************************************************** 对上面的数据改为将每条回应为研究对象进行文档聚类分析,结果如下: 综合上面两种聚类分析可以判断:公安部负责对人民网网民进行回应的工作人员有两名,因为每个人的写作用词习惯是比较固定的。 对三位房地产大佬在搜房网博客近期文章的分析: 搜房网博客链接: 标题: > txt
MetaID fname fid ID
1 0 穿越“鬼门关”登山者视界4(王) 3 1
2 0 美丽的建筑网友交流42(王) 7 2
3 0 如何了解日本民族网上交流43(王) 8 3
> txt
MetaID fname fid ID
1 0 从发改委的文件看政策的变化(任) 4 1
2 0 该不该降价(任) 6 2
3 0 听老柳侃管理(任) 11 3
4 0 稳定、明确的政策预期更为重要(任) 12 4
5 0 先拆还是先建,这是一门艺术(任) 13 5
6 0 幸福指数——再次写给八零后(任) 16 6
> txt
MetaID fname fid ID
1 0 IPAD现象预示了社会结构的变化(潘) 1 1
2 0 SOHO中国进驻上海外滩(潘) 2 2
3 0 房地产业要做受人尊重的行业(潘) 5 3
4 0 商业地产与住房是两个完全不同的市场(潘) 9 4
5 0 世界正经历分娩之阵痛(潘) 10 5
6 0 现在中国房地产市场上“尖叫”声一片(潘) 14 6
7 0 信仰改变了我的生命(潘) 15 7
8 0 银河SOHO和光华路SOHO2通过LEED预认证(潘) 17 8
9 0 银河SOHO开盘三天销售46.75亿元(潘) 18 9
10 0 致《酥油》作者: 你的爱和我们的感受构成世界的力量(潘) 19 10
>
结果: > ## 任志强最喜欢的用词:> inspect(dtm_rzq[,j])
A document-term matrix (6 documents,153);">10 terms)
Non-/sparse entries: 41/19Sparsity : 32%
Maximal term length: 2Weighting : term frequency (tf)
Terms
Docs 价格 企业 租赁 发展 改革 没有 社会 一代 知道 中国 1 5 4 7 3 6
2 31 2 4 15
42 2
9 4
25 6 25 48 30 55 41 35 51> ## 潘石屹最喜欢的用词:> inspect(dtm_psy[,153);">10 documents,153);">9 terms)
Non-/sparse entries: 49/41Sparsity : 46%
Maximal term length: 4Weighting : term frequency (tf)
Terms
Docs 一个 商业 上海 外滩 项目 房地产 市场 土地 soho 17 12 0 1
6 15 27 21 6
3 8 11 10 0
4 16 2 13
6 9
6 37 15 7 1 8 8 7
9 1 4 18
0> ## 王石最喜欢的用词> inspect(dtm_ws[,153);">3 documents,153);">16 terms)
Non-/sparse entries: 17/31Sparsity : 65%
Maximal term length: 2Weighting : term frequency (tf)
Terms
Docs 冰川 穿越 攀登 融化 珠峰 处理 东京 焚烧 垃圾 等级 了解 日本 喜欢 相扑 18 8 10
Terms
Docs 运动 秩序 6
由此看来王石仍然在到处玩儿,怪不得从万科A到万科B,再到万科债券08G1、08G2都跌的一塌糊涂。任志强的兴趣仍在研究国家政策,忧国忧民啊! 现在再用支持向量机的方法对上面的数据建模,看是否能分辨出某些话是谁说的: > library(e1071)
> ## 生成训练用的数据 ##………………
> tt <- rbind(tt,tt1)
>
> tt[is.na(tt)]<-0> tt[,68);">"作者"] <- factor(tt[,68);">"作者"])
> model <- svm(作者 ~ .,data = tt[c(4,153);">7:14,153);">17:18),],kernel = "sigmoid")
> summary(model)
Call:
svm(formula = 作者 ~ .,68);">"sigmoid")
Parameters:
SVM-Type: C-classification
SVM-Kernel: sigmoid
cost: 1
gamma: 0.01666667
coef.0: 0Number of Support Vectors: 10( 4 2 )
Number of Classes: 3Levels:
潘石屹 任志强 王石
> ## 模型拟合测试 ##> ## 训练集(样本内)拟合 ##> pred <- predict(model,tt[c(1:length(hh)])
> table(pred,68);">"作者"])
pred 潘石屹 任志强 王石
潘石屹 7 0
任志强 0
王石 2> ## 测试集(样本外)预测 ##> pred <- predict(model,153);">5:6,153);">15:16,153);">19),153);">1
训练集中有一个错的,但预测集中全中。 >
> test <- c("昨天休息了一天,驻地村子现在很大,二年前很小,自首位成功登上珠穆朗玛峰的探险家埃德蒙.希拉里组织义工建立学校医疗诊所,当地条件开始显著改善,目前这里三分之一的当地人已经移民国外,境外一些人士建立了一些家庭小旅馆,卫生条件不错,新西兰狮子会建立了一家小卫生所,以改善当地的医疗条件。这些让我体会到登山这项运动对当地生活条件改善的有益影响。") >………………
> tt1[,c(test_h)] <- test_tt[,c(test_h)] > tt1[is.na(tt1)]<-0> predict(model,tt1)
1
王石
Levels: 潘石屹 任志强 王石
>
对了,是《珠峰零公里口述之四 (2010-4-9 16:06:22)》中的一段话。 > test <- c("2007年出台的“第二套住房的信贷”新政,让中国的房地产市场调头直下,在“两防”的政策推力和美国的金融危机双重作用之下,让中国的宏观经济也随之调头直下,GDP快速下降到6.3%,从而让中国政府不得不用四万亿元投资、放量的货币信贷和解封“第二套住房信贷”改为0.7倍信贷降息和对改善性住房(实际的第二套)信贷给以支持,才让中国的房地产和宏观经济从谷底翻转恢复到保八之上。 + ") …………………… > tt1[,tt1)
1
任志强
Levels: 潘石屹 任志强 王石
>
也对了,是《何需分清几套房 (2010-4-29 9:38:52) 》中的一段话 那么下面这段文字是谁写的呢? test <- c("经常有人问我第一桶金怎么来的,从哪里得到的,有多少。其实每次有人问我这个问题时,我都想说,人的第一桶金是自信。即使你没钱也不要怕,自信就是你的资本。也有人在自信前面加了一个不好的修饰语,叫盲目自信,我不太爱听。我说过很多次自我的害处,但我认为与自我有点关系的不多的好东西之一,就是自信。自信当然有自我意识,还有信,相信的信。相信,是正面的、健康的。要相信自己。一个相信自己的人才会相信他人,相信未来。")
> predict(model,tt1) 1潘石屹
Levels: 潘石屹 任志强 王石
太神奇了!潘石屹——《自信是人生第一桶金》的一段。见下面的链接: http://www.pinggu.org/bbs/thread-863705-1-1.html 再根据他们所用的词频看看他们三人之关系谁更近一点: > dist(tt_s)
..........潘石屹 任志强
任志强 243.6945
王石 161.1552 204.2890
回复此公众号“文本挖掘”可获取word文档阅读。更多资料点击底部左下角“阅读原文”。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |