加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

R语言做文本挖掘 Part5情感分析

发布时间:2020-12-14 02:05:48 所属栏目:大数据 来源:网络整理
导读:原帖地址:http://blog.csdn.net/cl1143015961/article/details/44460873 Part2情感分析 ? 这是这个系列里面最后一篇文章了,其实这里文本挖掘每一个部分单拎出来都是值得深究和仔细研究的,我还处于初级研究阶段,用R里面现成的算法,来实现自己的需求,当

原帖地址:http://blog.csdn.net/cl1143015961/article/details/44460873


Part2情感分析

?

这是这个系列里面最后一篇文章了,其实这里文本挖掘每一个部分单拎出来都是值得深究和仔细研究的,我还处于初级研究阶段,用R里面现成的算法,来实现自己的需求,当然还参考了众多网友的智慧结晶,所以也想把我的收获总结出来分享给大家,希望也能像我一样在看大家的分享时得到自己的启发。

网上翻了下中文文本情感分析的一些文章,再回想了一下我自己做情感分析的方法,觉得我的想法真的是简单粗暴直接。这是一篇介绍中文文本情感分析倾向的论文。http://wenku.baidu.com/link?url=TVf5LgNS6esnunpgubvM14z24m0f4lTyD483gw_hEnp2RyeL6XzanSlz8oCcZCFlwKLqD0PdBhVUcV4-0loTdGp3hL-kqeTTwJ3l91HfTa3,中间讲到做情感分析目前主要有三种方法。第一种由已有的电子词典或词语知识库扩展生成情感倾向词典;第二种,无监督机器学习的方法。第三种基于人工标注语料库的学习方法。

上面三种方法不仔细一一说明了,它们都有一个共同的特点,需要一个情感倾向的语料库。我在R中的实现方案与第一种方法类似,整理一个褒义词词库一个贬义词词库(这个万能的互联网上有自己稍加整理就OK)。给文本做分词,并提取出中间的情感词。给每条文本定情感倾向评分初始值为1,跟褒义贬义词词库做匹配,褒义词+1,贬义词-1,计算出每条文本的最终情感倾向评分,为正值则是正面评价,为负值则是负面评价。方法可以基本实现情感倾向判断,但还可以改进。像前面参考论文中讲到的,还可以根据词语的词性强弱来评定感情的强,不只是+1和-1之分;还有考虑一些词语在不同语境下情感倾向可能会不同,比如论文中讲到的“骄傲”,这个我在想可能需要整理出有这样特殊情况的词语;还有负负得正的情况,比如“不喜欢是不可能的事情!”,照我的评分标准它的结果就是负面评价了;反问的情况,“哪里便宜了?”,评出来结果变成了正。“便宜”这个词我把它放在褒义词表下,其实仔细考虑如果是说“便宜实惠”肯定是褒义,如果说“便宜没好货”,也会是褒义,这就不对了,还是第二个问题不同语境下情感倾向会不同。

R中的实现过程:

1.??????数据输入处理

数据还是某品牌官微,取它微博中的1376条评论,情感褒义词库和贬义词库,将数据读入到R中。附词库下载地址:http://www.datatang.com/data/44317/,可能不是很全,需要自己整理丰富,我在看服装相关的文本时,发现有些词像“褪色”,“开线”,“显瘦”,“显胖”都没有在里面,这些就需要自己另外加进去。

> hlzj.comment <- readLines("hlzj_commentTest.txt")

> negative <-readLines("D:RRWorkspacehlzjWorkfilesnegative.txt")

> positive <-readLines("D:RRWorkspacehlzjWorkfilespositive.txt")

> length(hlzj.comment)

[1] 1376

> length(negative)

[1] 4477

> length(positive)

[1] 5588

?

2.??????对评论做分词处理并评级

过程类似Part2中讲到的分词处理。然后我自己写了个方法getEmotionalType(),将分词结果与negative表和positive表作对照计算得分。

> commentTemp <- gsub("[0-90123456789 < > ~]","",hlzj.comment)

> commentTemp <-segmentCN(commentTemp)

> commentTemp[1:2]

[[1]]

[1] "恭喜""大家"""?? "没有" "找到" ""?

[[2]]

?[1] "没有" "私信" ""?? ""?? "小编" ""?? ""?? ""?? ""?? ""?

> EmotionRank <-getEmotionalType(commentTemp,positive,negative)

[1] 0.073

[1] 0.145

[1] 0.218

[1] 0.291

[1] 0.363

[1] 0.436

[1] 0.509

[1] 0.581

[1] 0.654

[1] 0.727

[1] 0.799

[1] 0.872

[1] 0.945

> EmotionRank[1:10]

?[1] 1 0 2 1 1 2 3 1 0 0

> commentEmotionalRank <-list(rank=EmotionRank,comment=hlzj.comment)

> commentEmotionalRank <-as.data.frame(commentEmotionalRank)

> fix(commentEmotionalRank)

?

[plain] view plain copy print ?
  1. getEmotionalType?<-?function(x,pwords,nwords){??
  2. ????emotionType?<-numeric(0)??
  3. ????xLen?<-length(x)??
  4. ????emotionType[1:xLen]<-?0??
  5. ????index?<-?1??
  6. ????while(index?<=xLen){??
  7. ????????yLen?<-length(x[[index]])??
  8. ????????index2?<-?1??
  9. ????????while(index2<=?yLen){??
  10. ???????????if(length(pwords[pwords==x[[index]][index2]])?>=?1){??
  11. ???????????????emotionType[index]?<-?emotionType[index]?+?1??
  12. ????????????}else?if(length(nwords[nwords==x[[index]][index2]])?>=?1){??
  13. ???????????????emotionType[index]?<-?emotionType[index]?-?1??
  14. ????????????}??
  15. ????????????index2<-?index2?+?1??
  16. ????????}??
  17. ????????#获取进度??
  18. ???????if(index%%100==0){??
  19. ????????print(round(index/xLen,3))??
  20. ????????}????????
  21. ????????index?<-index?+1??
  22. ????}??
  23. ????emotionType??
  24. }??

?

查看到结果如下,第一个图里看着还挺正常的,第二个图好像是hlzj赞助的RM里出现了衣服被撕坏的时候的评论。没有黑他们家的意思,只是想找个例子来说明下差评的效果,好像不是很理想。那些反问的话无法识别判断,还有一些比较口语化的“醉了”,“太次”这样的词没有放到情感词库里,对这些评论的情感倾向识别效果不是很好。


?

像前面说的,方法有待改进,我的方法只是一个最基础的情感分析的实现方式,有任何问题欢迎指正。

转载请注明来源,谢谢!

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读