加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

【Python数据挖掘课程】八.关联规则挖掘及Apriori实现购物推荐

发布时间:2020-12-14 01:26:04 所属栏目:大数据 来源:网络整理
导读:? ? ? ? 这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。 ? ? ? ?? 1.关联规则挖掘概念及实现过程; ? ? ? ? 2.Apriori算法挖掘频繁项集; ? ? ? ? 3.Python实现关联规则挖掘及置信度、支持度计算。 ? ? ? ? 前文推荐: ? ? ? ?【Pyt
? ? ? ? 这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。
? ? ? ??1.关联规则挖掘概念及实现过程;
? ? ? ? 2.Apriori算法挖掘频繁项集;
? ? ? ? 3.Python实现关联规则挖掘及置信度、支持度计算。

? ? ? ? 前文推荐:
? ? ? ?【Python数据挖掘课程】一.安装Python及爬虫入门介绍
? ? ? ?【Python数据挖掘课程】二.Kmeans聚类数据分析及Anaconda介绍
? ? ? ?【Python数据挖掘课程】三.Kmeans聚类代码实现、作业及优化
? ? ? ?【Python数据挖掘课程】四.决策树DTC数据分析及鸢尾数据集分析
? ? ? ?【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例
? ? ? ?【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识
? ? ? ?【Python数据挖掘课程】七.PCA降维操作及subplot子图绘制

? ? ? ? 希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,这些基础知识真的非常重要。如果文章中存在不足或错误的地方,还请海涵~
? ? ? ? 参考:
? ? ? ??关联规则挖掘之Apriori算法实现超市购物 - eastmount
? ? ? ??关联规则简介与Apriori算法 - 百度文库guaidaoK


一. 关联规则挖掘概念及实现过程

? ? ? ? 1.关联规则
? ? ? ??关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。
? ? ? ? 关联规则首先被Agrawal,lmielinski and Swami在1993年的SIGMOD会议上提出。
? ? ? ? 关联规则挖掘的最经典的例子就是沃尔玛的啤酒与尿布的故事,通过对超市购物篮数据进行分析,即顾客放入购物篮中不同商品之间的关系来分析顾客的购物习惯,发现美国妇女们经常会叮嘱丈夫下班后为孩子买尿布,30%-40%的丈夫同时会顺便购买喜爱的啤酒,超市就把尿布和啤酒放在一起销售增加销售额。有了这个发现后,超市调整了货架的设置,把尿布和啤酒摆放在一起销售,从而大大增加了销售额。

? ? ? ? 2.常见案例
? ? ? ? 前面讲述了关联规则挖掘对超市购物篮的例子,使用Apriori对数据进行频繁项集挖掘与关联规则的产生是一个非常有用的技术,其中我们众所周知的例子如:
? ? ? ? (1) 沃尔玛超市的尿布与啤酒
? ? ? ? (2) 超市的牛奶与面包
? ? ? ? (3) 百度文库推荐相关文档
? ? ? ? (4) 淘宝推荐相关书籍
? ? ? ? (5) 医疗推荐可能的治疗组合
? ? ? ? (6) 银行推荐相关联业务
? ? ? ? 这些都是商务智能和关联规则在实际生活中的运用。

? ? ? ??
? ? ? ? 3.置信度与支持度
? ? ? ? (1) 什么是规则?
? ? ? ? 规则形如"如果…那么…(If…Then…)",前者为条件,后者为结果。例如一个顾客,如果买了可乐,那么他也会购买果汁。
? ? ? ? 如何来度量一个规则是否够好?有两个量,置信度(Confidence)和支持度(Support),假如存在如下表的购物记录。

? ? ? ? (2) 基本概念
? ? ? ? 关联规则挖掘是寻找给定数据集中项之间的有趣联系。如下图所示:


? ? ? ? 其中,I={ I1,I2,… Im } 是m个不同项目的集合,集合中的元素称为项目(Item)。
? ? ? ? 项目的集合I称为项目集合(Itemset),长度为k的项集成为k-项集(k-Itemset)。
? ? ? ? 设任务相关的数据D是数据库事务的集合,其中每个事务T是项的集合,使得T?I。每个事务有一个标识符TID;设A是一个项集,事务T包含A当且仅当A?I,则关联规则形式为A=>B(其中A?IB?I,并且AB= ?),交易集D中包含交易的个数记为|D|。

? ? ? ? 在关联规则度量中有两个重要的度量值:支持度和置信度。
? ? ? ? 对于关联规则R:A=>B,则:
? ? ? ? 支持度(suppport):是交易集中同时包含A和B的交易数与所有交易数之比。
? ? ? ? ? ? ? ? ? ? ? ? ? ? Support(A=>B)=P(A∪B)=count(A∪B)/|D|
? ? ? ? 置信度(confidence是包含A和B交易数与包含A的交易数之比。
? ? ? ? ? ? ? ? ? ? ? ? ? ? Confidence(A=>B)=P(B|A)=support(A∪B)/support(A)

? ? ? ? (3) 支持度
? ? ? ? 支持度(Support)计算在所有的交易集中,既有A又有B的概率。例如在5条记录中,既有橙汁又有可乐的记录有2条。则此条规则的支持度为 2/5=0.4,即:
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Support(A=>B)=P(AB)
? ? ? ? 现在这条规则可表述为,如果一个顾客购买了橙汁,则有50%(置信度)的可能购买可乐。而这样的情况(即买了橙汁会再买可乐)会有40%(支持度)的可能发生。?



? ? ? ? (4) 置信度
? ? ? ? 置信度(confidence)表示了这条规则有多大程度上值得可信。设条件的项的集合为A,结果的集合为B。置信度计算在A中,同时也含有B的概率(即:if A,then B的概率)。即 :
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Confidence(A=>B)=P(B|A)
? ? ? ? 例如计算“如果Orange则Coke”的置信度。由于在含有“橙汁”的4条交易中,仅有2条交易含有“可乐”,其置信度为0.5。

? ? ? ? (5) 最小支持度与频繁集
? ? ? ? 发现关联规则要求项集必须满足的最小支持阈值,称为
项集的最小支持度(Minimum Support),记为supmin。支持度大于或等于supmin的项集称为频繁项集,简称频繁集,反之则称为非频繁集。通常k-项集如果满足supmin,称为k-频繁集,记作Lk。关联规则的最小置信度(Minimum Confidence)记为confmin,它表示关联规则需要满足的最低可靠性。

? ? ? ? (6) 关联规则







? ? ? ? (7) 强关联规则
? ? ? ? 如果规则R:X=>Y 满足 support(X=>Y) >= supmin 且 confidence(X=>Y)>=confmin,称关联规则X=>Y为强关联规则,否则称关联规则X=>Y为弱关联规则
? ? ? ? 在挖掘关联规则时,产生的关联规则要经过supmin和confmin的衡量,筛选出来的强关联规则才能用于指导商家的决策。



二. Apriori算法挖掘频繁项集

? ? ? ? 关联规则对购物篮进行挖掘,通常采用两个步骤进行:
? ? ? ? a.找出所有频繁项集(文章中我使用Apriori算法>=最小支持度的项集)
? ? ? ? b.由频繁项集产生强关联规则,这些规则必须大于或者等于最小支持度和最小置信度。

? ? ? ? 下面将通超市购物的例子对关联规则挖掘Apriori算法进行分析。

? ? ? ? Apriori算法是一种对有影响的挖掘布尔关联规则频繁项集的算法,通过算法的连接和剪枝即可挖掘频繁项集。
? ? ? ?
Apriori算法将发现关联规则的过程分为两个步骤:
? ? ? ? 1.通过迭代,检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集;
? ? ? ? 2.利用频繁项集构造出满足用户最小置信度的规则。

? ? ? ? 挖掘或识别出所有频繁项集是该算法的核心,占整个计算量的大部分。?



? ? ? ? 补充频繁项集相关知识:
? ? ? ? K-项集:指包含K个项的项集;
? ? ? ? 项集的出现频率:指包含项集的事务数,简称为项集的频率、支持度计数或计数;
? ? ? ? 频繁项集:如果项集的出现频率大于或等于最小支持度计数阈值,则称它为频繁项集,其中频繁K-项集的集合通常记作Lk
? ? ? ? 下面直接通过例子描述该算法:如下图所示,使用Apriori算法关联规则挖掘数据集中的频繁项集。(最小支持度计数为2)

? ? ? ? 具体过程如下所示:

? ? ? ? 具体分析结果:
? ? ? ? 第一次扫描:对每个候选商品计数得C1,由于候选{D}支持度计数为1<最小支持度计数2,故删除{D}得频繁1-项集合L1;
? ? ? ? 第二次扫描:由L1产生候选C2并对候选计数得C2,比较候选支持度计数与最小支持度计数2得频繁2-项集合L2;
? ? ? ? 第三次扫描:用Apriori算法对L2进行连接和剪枝产生候选3项集合C3的过程如下:
? ? ? ? 1.连接:
? ? ? ? C3=L2

(连接)L2={{A,C},{B,E},{C,E}}

{{A,E}}={{A,B,{A,C,E}}
? ? ? ? 2.剪枝:
? ? ? ? {A,C}的2项子集{A,B},C}和{B,C},其中{A,B}不是2项子集L2,因此不是频繁的,从C3中删除;
? ? ? ? {A,E}的2项子集{A,E}和{C,E},其中{A,E}不是2项子集L2,因此不是频繁的,从C3中删除;
? ? ? ? {B,E}的2项子集{B,E},它的所有2项子集都是L2的元素,保留C3中。
? ? ? ? 经过Apriori算法对L2连接和剪枝后产生候选3项集的集合为C3={B,E}.?在对该候选商品计数,由于等于最小支持度计数2,故得频繁3-项集合L3,同时由于4-项集中仅1个,故C4为空集,算法终止。



三. 举例:频繁项集产生强关联规则

? ? ? ? 强关联规:如果规则R:X=>Y满足support(X=>Y)>=supmin(最小支持度,它用于衡量规则需要满足的最低重要性)且confidence(X=>Y)>=confmin(最小置信度,它表示关联规则需要满足的最低可靠性)称关联规则X=>Y为强关联规则,否则称关联规则X=>Y为弱关联规则。
? ? ? ? 例子:
? ? ? ? 现有A、B、C、D、E五种商品的交易记录表,找出所有频繁项集,假设最小支持度>=50%,最小置信度>=50%。
? ? ? ? 对于关联规则R:A=>B,则:
? ? ? ? 支持度(suppport是交易集中同时包含A和B的交易数与所有交易数之比。
? ? ? ? ? ? ? ? ? ? ? ? ? ? Support(A=>B)=P(A∪B)=count(A∪B)/|D|
? ? ? ? 置信度(confidence是包含A和B交易数与包含A的交易数之比。
? ? ? ? ? ? ? ? ? ? ? ? ? ? Confidence(A=>B)=P(B|A)=support(A∪B)/support(A)


? ? ? ? 计算过程如下,K=1的时候项集{A}在T1、T3中出现2次,共4条交易,故支持度为2/4=50%,依次计算。其中项集{D}在T1出现,其支持度为1/4=25%,小于最小支持度50%,故去除,得到L1。
? ? ? ? 然后对L1中项集两两组合,再分别计算其支持度,其中项集{A,B}在T3中出现1次,其支持度=1/4=25%,小于最小支持度50%,故去除,同理得到L2项集。




? ? ? ? 然后如下图所示,对L2中的项集进行组合,其中超过三项的进行过滤,最后计算得到L3项集{B,C,E}。


? ? ? ? 最后对计算置信度,如下图所示。


? ? ? ? Apriori算法弊端:需要多次扫描数据表。如果频繁集最多包含10个项,那么就需要扫描交易数据表10遍,这需要很大的I/O负载。同时,产生大量频繁集,若有100个项目,可能产生候选项数目。

? ? ? ? 故:Jiawei Han等人在2000年提出了一种基于FP-树的关联规则挖掘算法FP_growth,它采取“分而治之”的策略,将提供频繁项目集的数据库压缩成一棵频繁模式树(FP-树)。
? ? ? ? 推荐一张图,详细分析关联规则的过程:



? ? ? ? 参考文献:
? ? ? ? [1]高明 . 关联规则挖掘算法的研究及其应用[D].山东师范大学. 2006
? ? ? ? [2]李彦伟 . 基于关联规则的数据挖掘方法研究[D].江南大学. 2011
? ? ? ? [3]肖劲橙,林子禹,毛超.关联规则在零售商业的应用[J].计算机工程.2004,30(3):189-190.
? ? ? ? [4]秦亮曦,史忠植.关联规则研究综述[J].广西大学学报.2005,30(4):310-317.
? ? ? ? [5]陈志泊,韩慧,王建新,孙俏,聂耿青.数据仓库与数据挖掘[M].北京:清华大学出版社.2009.
? ? ? ? [6]沈良忠.关联规则中Apriori 算法的C#实现研究[J].电脑知识与技术.2009,5(13):3501-3504.
? ? ? ? [7]赵卫东.商务智能(第二版)[M].北京:清华大学出版社.2011.


四. Python实现关联规则挖掘及置信度、支持度计算

? ? ? ? 由于这部分代码在Sklearn中没有相关库,自己后面会实现并替换,目前参考空木大神的博客。地址:http://www.voidcn.com/article/p-hoymzpzt-om.html

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 28 03:29:51 2016

地址:http://blog.csdn.net/u010454729/article/details/49078505

@author: 参考CSDN u010454729 
"""

# coding=utf-8  
def  loadDataSet():  
    return [[1,3,4],[2,5],[1,2,5]]  
  
def createC1(dataSet):                  #构建所有候选项集的集合  
    C1 = []  
    for transaction in dataSet:  
        for item in transaction:  
            if not [item] in C1:  
                C1.append([item])       #C1添加的是列表,对于每一项进行添加,{1},{3},{4},{2},{5}  
    C1.sort()  
    return map(frozenset,C1)           #使用frozenset,被“冰冻”的集合,为后续建立字典key-value使用。  
  
def scanD(D,Ck,minSupport):             #由候选项集生成符合最小支持度的项集L。参数分别为数据集、候选项集列表,最小支持度  
    ssCnt = {}  
    for tid in D:                       #对于数据集里的每一条记录  
        for can in Ck:                  #每个候选项集can  
            if can.issubset(tid):       #若是候选集can是作为记录的子集,那么其值+1,对其计数  
                if not ssCnt.has_key(can):#ssCnt[can] = ssCnt.get(can,0)+1一句可破,没有的时候为0,加上1,有的时候用get取出,加1  
                    ssCnt[can] = 1  
                else:  
                    ssCnt[can] +=1  
    numItems = float(len(D))    
    retList  = []  
    supportData = {}  
    for key in ssCnt:  
        support = ssCnt[key]/numItems   #除以总的记录条数,即为其支持度  
        if support >= minSupport:  
            retList.insert(0,key)       #超过最小支持度的项集,将其记录下来。  
        supportData[key] = support  
    return retList,supportData  
  
def aprioriGen(Lk,k):                  #创建符合置信度的项集Ck,retList = []  
    lenLk   = len(Lk)  
    for i in range(lenLk):  
        for j in range(i+1,lenLk):     #k=3时,[:k-2]即取[0],对{0,1},{0,2},{1,2}这三个项集来说,L1=0,L2=0,将其合并得{0,1,2},当L1=0,L2=1不添加,  
            L1 = list(Lk[i])[:k-2]  
            L2 = list(Lk[j])[:k-2]  
            L1.sort()  
            L2.sort()  
            if L1==L2:  
                retList.append(Lk[i]|Lk[j])  
    return retList  
  
def apriori(dataSet,minSupport = 0.5):  
    C1 = createC1(dataSet)  
    D  = map(set,dataSet)  
    L1,supportData = scanD(D,C1,minSupport)  
    L  = [L1]                           #L将包含满足最小支持度,即经过筛选的所有频繁n项集,这里添加频繁1项集  
    k  = 2  
    while (len(L[k-2])>0):              #k=2开始,由频繁1项集生成频繁2项集,直到下一个打的项集为空  
        Ck = aprioriGen(L[k-2],k)  
        Lk,supK = scanD(D,minSupport)  
        supportData.update(supK)        #supportData为字典,存放每个项集的支持度,并以更新的方式加入新的supK  
        L.append(Lk)  
        k +=1  
    return L,supportData  
  
dataSet = loadDataSet()  
C1 = createC1(dataSet)  
print "所有候选1项集C1:n",C1  
  
D = map(set,dataSet)  
print "数据集D:n",D  
  
L1,supportData0 = scanD(D,0.5)  
print "符合最小支持度的频繁1项集L1:n",L1  
  
L,suppData = apriori(dataSet)  
print "所有符合最小支持度的项集L:n",L  
print "频繁2项集:n",aprioriGen(L[0],2)  
L,suppData = apriori(dataSet,minSupport=0.7)  
print "所有符合最小支持度为0.7的项集L:n",L  
? ? ? ? 输出结果:
所有候选1项集C1:
[frozenset([1]),frozenset([2]),frozenset([3]),frozenset([4]),frozenset([5])]
数据集D:
[set([1,4]),set([2,5]),set([1,5])]
符合最小支持度的频繁1项集L1:
[frozenset([1]),frozenset([5])]
所有符合最小支持度的项集L:
[[frozenset([1]),frozenset([5])],[frozenset([1,3]),frozenset([2,frozenset([3,5])],[frozenset([2,[]]
频繁2项集:
[frozenset([1,frozenset([1,2]),5])]
所有符合最小支持度为0.7的项集L:
[[frozenset([3]),[]]


? ? ? ? 最后希望这篇文章对你有所帮助,尤其是我的学生和接触数据挖掘、机器学习的博友。星期天晚上和思华在办公室写到三点半,庆幸这么好多可爱的学生,自己也在成长,经历很多终究是好事,最近沉醉某些事中,希望能成真!加油~
? ? ? ?(By:Eastmount 2016-11-28 凌晨3点半??http://blog.csdn.net/eastmount/)

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读