Engagement Index-3:计算方法和案例初探
建议先阅读系列的第-1篇:参与度指数的含义和第-2篇:构成参与度指数的参数选择,分类和数据收集办法。 1. Peterson给出的Engagement Index的计算方法提高Engagement Index(EI)的计算方法,就不能不提 Eric Peterson 最初的贡献,后来他整理成了白皮书,发布在这里:Measuring the Immeasurable-Visitor Engagement(备选下载链接),这是关于参与度指数计算方法的第一次正式讨论;我们最终提到的参与度指数的计算方法也受了他的很大的影响。不过Petersson提出的是一个非常普遍化的一个公式,具体到一个项目中,需要根据所研究对象的属性寻找合适的参数和权重。 Petersson给出的公式很简单,只是一个简单的加权求和的公式,其中使用到的参数也是网站分析中非常常见的: Σ(Ci + Di + Ri + Li + Bi + Fi + Ii) 其中, • C=Click Depth Index,指用户的访问深度,由PV和Event组成 • D=Duration Index,指用户在网站的停留时间 • R=Recency Index,指用户最近一次访问网站的时间+用户的访问频率 • B=Brand Index,指用户对网站和产品的认知程度(awareness) • F=Feedback Index,指用户对网站做的有价值的反馈信息 • I=Interaction Index,指用户和网站内容/功能的一个互动的过程,在这个过程中用户会对网站和产品给予更多的关注。 • L=Loyalty Index:,指用户在较长时间段内和网站/产品互动的情况 (更详细的解释请参考白皮书) 2. 在IIPIC基础上的EI的维度和计算方法我们在最初论证参与度指数的时候(可以推到2008年),因为从一开始便考虑到了一个网站(主网站)所处的生态系统,包括第三方网站,竞争网站,卫星网站,社交网络应用和widget,所以最终得出结果是建立在Forrester最初提出来的参与度构成的4I (见 1参与度指数的含义)的基础上的,和人群分组相结合,按照参与度的组成部分来计算,可以在时间轴上横向比较的一个参数。所以我们设想中的参与度指数是至少分为三维的: ei=f(s,i,to),EI=F(S,I,to) 其中S=Σs,人群分组,segement;I=Σi,构成参与度指数的元素,4i (或者IIPIC),to为所选时间点或者时间区间 也就是说,
比如,一个随便举的例子,其中所有数据都为假设:
在这里,每个阶段的总EI可以加权求平均值,权数就是每个分组的用户数目;但是对于每一个分组的总的EI,和整个研究对象的EI则很难通过一定的公式来求得,比如说,他应该是各个阶段的ei的平均值呢还是各个阶段ei的和?亦或是加权和或者是加权平均值?权数如何确定?这里的主要决定因素是具体计算中,ei=f(s,to)的函数是怎么样的,和EI=F(S,I,to)有什么联系。 谈到这里,希望大家对EI的计算方法有了一个大体的印象,主要是理解其中的思维和逻辑吧。至于ei=f(s,to)的具体写法,这个是根据项目和需求而定的。我在案例分析中会谈一下我们使用的方法。 3.关于参与度指数的案例初探案例所要介绍的项目是为一个奢侈品公司的电子商务网站创建一个Engagement Index模型。这是一个Flash网站,若干卫星网站,在社交媒体上有行业中相对领先的布局。项目整体的scoop很大,评估的是整个digital environment。不过我们这次是从网站数据入手,先通过网站分析数据对用户有一个大致的了解。我们使用的数据是从其网站分析工具Omniture Insight中提取出来。样本是随机抽取的2009年的大约900万Visitor的所有访问数据,总共20G 的txt文件,导入SAS之后80G。第一次处理这么多的数据,遇到的困难还是挺多的。 这个网站在6个国家有电子商务模块,销售可观;但是在大部分国家没有。品牌更注重的是这个网站如何能够提升自身的形象,而不是销售。正如模型的名字所说,要做的是“Engagement”,而不是“Sales”。项目的目的是通过研究网站用户的行为特征,通过Engagement Level来评估,进而评价网站内容和相关市场营销活动的效果,同时(我们考虑)后期有条件的话,研究不同程度的Engagement和销售的关系。 点击此处查看原始数据样本。 原始数据包含诸如Visitor ID,Session Number,Language,Country,Turnover,Traffic sources,Campaign等29个原始变量。变量的数目虽然少,但是它们已经涵盖了大多数网站分析的基本变量,在这些变量的基础上我们可以计算出其他参数和指标。不过当然,在项目初期我们要求的很多变量还是没有能够提取出来。 通过原始数据样本大家也许可以看到一些端倪。实际上,这些数据的最小记录单元是Page,一条记录(一行)代表一个PV,以及和这个PV相关的28个变量的值。PV可以通过Session Number归类组成一条visit的全部记录(2009年),而Session Number可以通过Visitor ID归类组成一条visitor的全部记录(2009年)。 有了这些数据,下面我们就可以开始干活了。下一篇中我会重点介绍原始数据的数据结构和各种不同层次(Page,Visit和visitor)视图的创建。敬请关注Engagement Index-4:数据准备和参数创建 后记:这是上周写的,竟然忘记发了。最近忙的焦头烂额,恨不得把自己大卸八块,然后每块装上三头六臂,所以这周也没有写,正好拿这篇顶替了。 火上浇油,老板突然又给了一个关于Emerging Platform的东西,要求周四交框架。目前主题集中在SNS和Mobile两块上。自2005年以来,大家都知道哪些Emerging Platform呢(诸如Facebook,Twitter,Foursquare,iAD之类)?在Marketing的层面上,它们都能提供哪些机遇?我们如何评测在这些平台上进行的广告活动的效果呢?谢谢建议!也可以发送到我的email大家一起讨论。hailongxia AT gmail . com 出处:http://semwatch.org/ (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |