C++利用opencv实现人脸检测
小编所有的帖子都是基于unbuntu系统的,当然稍作修改同样试用于windows的,经过小编的绞尽脑汁,把刚刚发的那篇python 实现人脸和眼睛的检测的程序用C++ 实现了,当然,也参考了不少大神的博客,下面我们就一起来看看: Linux系统下安装opencv我就再乱淮危乐褂行┤嗣挥邪沧懊坏魇猿隼磁缧”嗟某绦蚴歉隹樱 好多人不会编译opencv,我再多写几句解决一下好多菜鸟的困难吧 copy完代码之后,保存为xiaorun.cpp哦,记得编译试用个g++ -o xiaorun ./xiaorun.cpp -lopencv_highgui -lopenc_imgproc -lopencv_core -lopencv_objdetect 即可实现 #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/core/core.hpp> #include <opencv2/objdetect/objdetect.hpp> #include <iostream> using namespace cv; using namespace std; void detectAndDraw( Mat& img,CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale,bool tryflip ); int main() { CascadeClassifier cascade,nestedCascade; bool stop = false; cascade.load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml"); nestedCascade.load("/usr/share/opencv/haarcascades/haarcascade_eye.xml"); // frame = imread("renlian.jpg"); VideoCapture cap(0); //打开默认摄像头 if(!cap.isOpened()) { return -1; } Mat frame; Mat edges; while(!stop) { cap>>frame; detectAndDraw( frame,cascade,nestedCascade,2,0 ); if(waitKey(30) >=0) stop = true; imshow("cam",frame); } //CascadeClassifier cascade,nestedCascade; // bool stop = false; //训练好的文件名称,放置在可执行文件同目录下 // cascade.load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml"); // nestedCascade.load("/usr/share/opencv/haarcascades/aarcascade_eye.xml"); // frame = imread("renlian.jpg"); // detectAndDraw( frame,0 ); // waitKey(); //while(!stop) //{ // cap>>frame; // detectAndDraw( frame,0 ); if(waitKey(30) >=0) stop = true; //} return 0; } void detectAndDraw( Mat& img,bool tryflip ) { int i = 0; double t = 0; //建立用于存放人脸的向量容器 vector<Rect> faces,faces2; //定义一些颜色,用来标示不同的人脸 const static Scalar colors[] = { CV_RGB(0,255),CV_RGB(0,128,255,0),CV_RGB(255,255)} ; //建立缩小的图片,加快检测速度 //nt cvRound (double value) 对一个double型的数进行四舍五入,并返回一个整型数! Mat gray,smallImg( cvRound (img.rows/scale),cvRound(img.cols/scale),CV_8UC1 ); //转成灰度图像,Harr特征基于灰度图 cvtColor( img,gray,CV_BGR2GRAY ); // imshow("灰度",gray); //改变图像大小,使用双线性差值 resize( gray,smallImg,smallImg.size(),INTER_LINEAR ); // imshow("缩小尺寸",smallImg); //变换后的图像进行直方图均值化处理 equalizeHist( smallImg,smallImg ); //imshow("直方图均值处理",smallImg); //程序开始和结束插入此函数获取时间,经过计算求得算法执行时间 t = (double)cvGetTickCount(); //检测人脸 //detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示 //每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大 //小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30,30)为目标的 //最小最大尺寸 cascade.detectMultiScale( smallImg,faces,1.1,0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH |CV_HAAR_SCALE_IMAGE,Size(30,30)); //如果使能,翻转图像继续检测 if( tryflip ) { flip(smallImg,1); // imshow("反转图像",smallImg); cascade.detectMultiScale( smallImg,faces2,0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH |CV_HAAR_SCALE_IMAGE,30) ); for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ) { faces.push_back(Rect(smallImg.cols - r->x - r->width,r->y,r->width,r->height)); } } t = (double)cvGetTickCount() - t; // qDebug( "detection time = %g msn",t/((double)cvGetTickFrequency()*1000.) ); for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++,i++ ) { Mat smallImgROI; vector<Rect> nestedObjects; Point center; Scalar color = colors[i%8]; int radius; double aspect_ratio = (double)r->width/r->height; if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) { //标示人脸时在缩小之前的图像上标示,所以这里根据缩放比例换算回去 center.x = cvRound((r->x + r->width*0.5)*scale); center.y = cvRound((r->y + r->height*0.5)*scale); radius = cvRound((r->width + r->height)*0.25*scale); circle( img,center,radius,color,3,8,0 ); } else rectangle( img,cvPoint(cvRound(r->x*scale),cvRound(r->y*scale)),cvPoint(cvRound((r->x + r->width-1)*scale),cvRound((r->y + r->height-1)*scale)),0); if( nestedCascade.empty() ) continue; smallImgROI = smallImg(*r); //同样方法检测人眼 nestedCascade.detectMultiScale( smallImgROI,nestedObjects,0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH //|CV_HAAR_DO_CANNY_PRUNING |CV_HAAR_SCALE_IMAGE,30) ); for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) { center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); radius = cvRound((nr->width + nr->height)*0.25*scale); circle( img,0 ); } } // imshow( "识别结果",img ); } 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |