c – DLIB:训练194个地标的Shape_predictor(海伦数据集)
发布时间:2020-12-16 10:02:39 所属栏目:百科 来源:网络整理
导读:我正在使用helen数据集训练DLIB的194个面部地标的shape_predictor,该数据集用于通过dlib库的face_landmark_detection_ex.cpp检测面部地标. 现在它给了我一个大约45 MB的sp.dat二进制文件,与68个面部标志的给定文件(http://sourceforge.net/projects/dclib/fi
我正在使用helen数据集训练DLIB的194个面部地标的shape_predictor,该数据集用于通过dlib库的face_landmark_detection_ex.cpp检测面部地标.
现在它给了我一个大约45 MB的sp.dat二进制文件,与68个面部标志的给定文件(http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2)相比较少.在培训中 >平均训练误差:0.0203811 当我使用经过训练的数据获得面部地标位置时,结果我得到了…… 这与68个地标的结果非常不同 68地标图片: 为什么? 解决方法
好的,看起来你还没有看过
code评论(?):
shape_predictor_trainer trainer; // This algorithm has a bunch of parameters you can mess with. The // documentation for the shape_predictor_trainer explains all of them. // You should also read Kazemi's paper which explains all the parameters // in great detail. However,here I'm just setting three of them // differently than their default values. I'm doing this because we // have a very small dataset. In particular,setting the oversampling // to a high amount (300) effectively boosts the training set size,so // that helps this example. trainer.set_oversampling_amount(300); // I'm also reducing the capacity of the model by explicitly increasing // the regularization (making nu smaller) and by using trees with // smaller depths. trainer.set_nu(0.05); trainer.set_tree_depth(2); 看看Kazemi paper,ctrl -f字符串’参数’并有一个读… (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |