c – CUDA:嵌入式循环内核
发布时间:2020-12-16 06:55:32 所属栏目:百科 来源:网络整理
导读:我有一些代码,我想进入一个cuda内核.看吧: for (r = Y; r Y + H; r+=2) { ch1RowSum = ch2RowSum = ch3RowSum = 0; for (c = X; c X + W; c+=2) { chan1Value = //some calc'd value chan3Value = //some calc'd value chan2Value = //some calc'd value ch
我有一些代码,我想进入一个cuda内核.看吧:
for (r = Y; r < Y + H; r+=2) { ch1RowSum = ch2RowSum = ch3RowSum = 0; for (c = X; c < X + W; c+=2) { chan1Value = //some calc'd value chan3Value = //some calc'd value chan2Value = //some calc'd value ch2RowSum += chan2Value; ch3RowSum += chan3Value; ch1RowSum += chan1Value; } ch1Mean += ch1RowSum / W; ch2Mean += ch2RowSum / W; ch3Mean += ch3RowSum / W; } 这应该分成两个内核,一个用于计算RowSums,另一个用于计算均值,我应该如何处理我的循环索引从零开始并在N结束的事实? 解决方法
假设你有一个计算三个值的内核.配置中的每个线程将计算每个(r,c)对的三个值.
__global__ value_kernel(Y,H,X,W) { r = blockIdx.x + Y; c = threadIdx.x + W; chan1value = ... chan2value = ... chan3value = ... } 我不相信你可以在上面的内核中计算总和(至少完全平行).您将无法像上面那样使用=.你可以把它全部放在一个内核中,如果你在每个块(行)中只有一个线程做总和和意思,就像这样…… __global__ both_kernel(Y,W) { r = blockIdx.x + Y; c = threadIdx.x + W; chan1value = ... chan2value = ... chan3value = ... if(threadIdx.x == 0) { ch1RowSum = 0; ch2RowSum = 0; ch3RowSum = 0; for(i=0; i<blockDim.x; i++) { ch1RowSum += chan1value; ch2RowSum += chan2value; ch3RowSum += chan3value; } ch1Mean = ch1RowSum / blockDim.x; ch2Mean = ch2RowSum / blockDim.x; ch3Mean = ch3RowSum / blockDim.x; } } 但是最好使用第一个值内核,然后使用第二个内核来获得总和,这意味着…可以进一步并行化下面的内核,如果它是独立的,你可以在准备好时专注于它. __global__ sum_kernel(Y,W) { r = blockIdx.x + Y; ch1RowSum = 0; ch2RowSum = 0; ch3RowSum = 0; for(i=0; i<W; i++) { ch1RowSum += chan1value; ch2RowSum += chan2value; ch3RowSum += chan3value; } ch1Mean = ch1RowSum / W; ch2Mean = ch2RowSum / W; ch3Mean = ch3RowSum / W; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |