C语言实现基于最大堆和最小堆的堆排序算法示例
堆定义 堆排序的思想
这里以最大堆为基础,其基本思想为: 1.将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区; C语言实现 // 初始化堆 void initHeap(int a[],int len) { // 从完全二叉树最后一个非子节点开始 // 在数组中第一个元素的索引是0 // 第n个元素的左孩子为2n+1,右孩子为2n+2, // 最后一个非子节点位置在(n - 1) / 2 for (int i = (len - 1) / 2; i >= 0; --i) { adjustMaxHeap(a,len,i); } } void adjustMaxHeap(int a[],int len,int parentNodeIndex) { // 若只有一个元素,那么只能是堆顶元素,也没有必要再排序了 if (len <= 1) { return; } // 记录比父节点大的左孩子或者右孩子的索引 int targetIndex = -1; // 获取左、右孩子的索引 int leftChildIndex = 2 * parentNodeIndex + 1; int rightChildIndex = 2 * parentNodeIndex + 2; // 没有左孩子 if (leftChildIndex >= len) { return; } // 有左孩子,但是没有右孩子 if (rightChildIndex >= len) { targetIndex = leftChildIndex; } // 有左孩子和右孩子 else { // 取左、右孩子两者中最大的一个 targetIndex = a[leftChildIndex] > a[rightChildIndex] ? leftChildIndex : rightChildIndex; } // 只有孩子比父节点的值还要大,才需要交换 if (a[targetIndex] > a[parentNodeIndex]) { int temp = a[targetIndex]; a[targetIndex] = a[parentNodeIndex]; a[parentNodeIndex] = temp; // 交换完成后,有可能会导致a[targetIndex]结点所形成的子树不满足堆的条件, // 若不满足堆的条件,则调整之使之也成为堆 adjustMaxHeap(a,targetIndex); } } void heapSort(int a[],int len) { if (len <= 1) { return; } // 初始堆成无序最大堆 initHeap(a,len); for (int i = len - 1; i > 0; --i) { // 将当前堆顶元素与最后一个元素交换,保证这一趟所查找到的堆顶元素与最后一个元素交换 // 注意:这里所说的最后不是a[len - 1],而是每一趟的范围中最后一个元素 // 为什么要加上>0判断?每次不是说堆顶一定是最大值吗?没错,每一趟调整后,堆顶是最大值的 // 但是,由于len的范围不断地缩小,导致某些特殊的序列出现异常 // 比如说,5,3,8,6,4序列,当调整i=1时,已经调整为3,4,5,8序列,已经有序了 // 但是导致了a[i]与a[0]交换,由于变成了4,8反而变成无序了! if (a[0] > a[i]) { int temp = a[0]; a[0] = a[i]; a[i] = temp; } // 范围变成为: // 0...len-1 // 0...len-1-1 // 0...1 // 结束 // 其中,0是堆顶,每次都是找出在指定的范围内比堆顶还大的元素,然后与堆顶元素交换 adjustMaxHeap(a,i - 1,0); } } 2.基于最小堆实现降序排序 // 初始化堆 void initHeap(int a[],int len) { // 从完全二叉树最后一个非子节点开始 // 在数组中第一个元素的索引是0 // 第n个元素的左孩子为2n+1,右孩子为2n+2, // 最后一个非子节点位置在(n - 1) / 2 for (int i = (len - 1) / 2; i >= 0; --i) { adjustMinHeap(a,i); } } void adjustMinHeap(int a[],int parentNodeIndex) { // 若只有一个元素,那么只能是堆顶元素,也没有必要再排序了 if (len <= 1) { return; } // 记录比父节点大的左孩子或者右孩子的索引 int targetIndex = -1; // 获取左、右孩子的索引 int leftChildIndex = 2 * parentNodeIndex + 1; int rightChildIndex = 2 * parentNodeIndex + 2; // 没有左孩子 if (leftChildIndex >= len) { return; } // 有左孩子,但是没有右孩子 if (rightChildIndex >= len) { targetIndex = leftChildIndex; } // 有左孩子和右孩子 else { // 取左、右孩子两者中最上的一个 targetIndex = a[leftChildIndex] < a[rightChildIndex] ? leftChildIndex : rightChildIndex; } // 只有孩子比父节点的值还要小,才需要交换 if (a[targetIndex] < a[parentNodeIndex]) { int temp = a[targetIndex]; a[targetIndex] = a[parentNodeIndex]; a[parentNodeIndex] = temp; // 交换完成后,有可能会导致a[targetIndex]结点所形成的子树不满足堆的条件, // 若不满足堆的条件,则调整之使之也成为堆 adjustMinHeap(a,int len) { if (len <= 1) { return; } // 初始堆成无序最小堆 initHeap(a,len); for (int i = len - 1; i > 0; --i) { // 将当前堆顶元素与最后一个元素交换,保证这一趟所查找到的堆顶元素与最后一个元素交换 // 注意:这里所说的最后不是a[len - 1],而是每一趟的范围中最后一个元素 // 为什么要加上>0判断?每次不是说堆顶一定是最小值吗?没错,每一趟调整后,堆顶是最小值的 // 但是,由于len的范围不断地缩小,导致某些特殊的序列出现异常 // 比如说,5,8反而变成无序了! if (a[0] < a[i]) { int temp = a[0]; a[0] = a[i]; a[i] = temp; } // 范围变成为: // 0...len-1 // 0...len-1-1 // 0...1 // 结束 // 其中,0是堆顶,每次都是找出在指定的范围内比堆顶还小的元素,然后与堆顶元素交换 adjustMinHeap(a,0); } } 3.C语言版测试 大家可以测试一下: // int a[] = {5,4}; int a[] = {89,-7,999,-89,7,-888,-7}; heapSort(a,sizeof(a) / sizeof(int)); for (int i = 0; i < sizeof(a) / sizeof(int); ++i) { NSLog(@"%d",a[i]); } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |