解读堆排序算法及用C++实现基于最大堆的堆排序示例
1、堆排序定义 2、最大堆和最小堆 3、堆排序的基本思路如下: // 用于计算下标为i的节点的两个子节点的下标值 #define LEFT(i) (2 * (i) + 1) #define RIGHT(i) (2 * ((i) + 1)) /* 此函数把一颗二叉树中以node为根的子树变成最大堆。 * 注意: 使用的前提条件是 node节点的左右子树(如果存在的话)都是最大堆。 * 这个函数是整个算法的关键。 */ void max_heapify(int heap[],int heap_size,int node) { // 这里先不考虑整数溢出的问题 // 先把注意力放在主要的功能上 // 如果数据规模够大,int类型必然会溢出 int l_child = LEFT(node); int r_child = RIGHT(node); int max_value = node; if (l_child < heap_size && heap[l_child] > heap[max_value]) { max_value = l_child; } if (r_child < heap_size && heap[r_child] > heap[max_value]) { max_value = r_child; } if (max_value != node) { swap_val(heap + node,heap + max_value); // 之后还要保证被交换的子节点构成的子树仍然是最大堆 // 如果不是这个节点会继续"下沉",直到合适的位置 max_heapify(heap,heap_size,max_value); } } /* 将一个数组构造成最大堆 * 自底向上的利用max_heapify函数处理 */ void build_max_heap(int heap[],int heap_size) { if (heap_size < 2) { return; } int first_leaf = heap_size >> 1;//第一个叶子节点的下标 int i; // 从最后一个非叶子节点开始自底向上构建, // 叶子节点都看作最大堆,因此可以使用max_heapify函数 for (i = first_leaf - 1; i >= 0; i--) { max_heapify(heap,i); } } 函数max_heapify将指定子树的根节点"下沉"到合适的位置,最终子树变成最大堆, 该过程最坏时间复杂度为O(logn)O(logn)。函数build_max_heap自底向上的调用max_heapify,最终整个数组满足最大堆,迭代过程的复杂度为O(nlogn)O(nlogn), 因此整个函数的最坏时间复杂度也是O(nlogn)O(nlogn)。 而如果当前数组已经是最大堆了,例如数组原本是降序排列的, 那么max_heapify过程的时间复杂度就是O(1)O(1),此时build_max_heap的时间复杂度是O(n)O(n),这是最好的情况。 接着实现堆排序过程: /* heap sort 主函数 */ void heap_sort(int heap[],int heap_size) { if (heap == NULL || heap_size < 2) { return; } //构建最大堆 build_max_heap(heap,heap_size); int i; for (i = heap_size - 1; i > 0; i--) { /* 把当前树的根节点交换到末尾 * 相当于取出最大值,树的规模变小。 * 交换后的树不是最大堆,但是根的两颗子树依然是最大堆 * 满足调用max_heapify的条件。之所以这样交换, * 是因为用max_heapify处理时间复杂度较低, * 如果不交换而直接"取出"heap[0],此处可能要使用 * build_max_heap重新建立最大堆,时间复杂度较大 */ swap_val(heap,heap + i); heap_size--; //维护最大堆 max_heapify(heap,0); } } 最终的堆排序算法中,build_max_heap的复杂度是已知的, 迭代部分和build_max_heap的实现类似,而且不难看出, 交换后的根元素在下一次建堆过程中必然下沉到堆底,因此无论情况好坏, 该迭代过程时间复杂度都是O(nlogn)O(nlogn), 所以整个算法的最好最坏和平均时间复杂度都是O(nlogn)O(nlogn)。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |