c# – 使用MathNET的置信区间
发布时间:2020-12-16 01:59:13 所属栏目:百科 来源:网络整理
导读:我有一个IEnumerable double数据样本.我想计算信号/数据的90%置信区间.我有 MathNET library可供我使用,但我对如何正确使用库感到困惑.根据我的数据,我们的想法是返回两个包含原始信号置信区间的附加数据数组 using MathNet.Numerics.Statistics;using Math
我有一个IEnumerable< double>数据样本.我想计算信号/数据的90%置信区间.我有
MathNET library可供我使用,但我对如何正确使用库感到困惑.根据我的数据,我们的想法是返回两个包含原始信号置信区间的附加数据数组
using MathNet.Numerics.Statistics; using MathNet.Numerics.Distributions; public static List<double[]> ConfidenceIntervals(IEnumerable<double> sample,double interval) { Contract.Requires(interval > 0 && interval < 1.0); int sampleSize = sample.Count(); double alpha = 1.0 - interval; double mean = sample.Mean(); double sd = sample.StandardDeviation(); double t,mu; double[] upper = new double[sampleSize]; double[] lower = new double[sampleSize]; StudentT studentT = new StudentT(mean,alpha,sampleSize - 1); int index = 0; foreach (double d in sample) { t = studentT.CumulativeDistribution(d); double tmp = t * (sd / Math.Sqrt(sampleSize)); mu = mean - tmp; upper[index] = d + mu; lower[index] = d - mu; } return new List<double[]>() { upper,lower }; } 这在数学方面确实不复杂,我对如何正确使用MathNET library中可用的函数/方法感到困惑. 解决方法
我不完全确定我理解信号的置信区间应该如何应用于信号的每个样本,但是我们可以如下计算样本集的置信区间:
public static Tuple<double,double> A(double[] samples,double interval) { double theta = (interval + 1.0)/2; double mean = samples.Mean(); double sd = samples.StandardDeviation(); double T = StudentT.InvCDF(0,1,samples.Length-1,theta); double t = T * (sd / Math.Sqrt(samples.Length)); return Tuple.Create(mean-t,mean+t); } 除了我们计算T的行不能编译,因为遗憾的是当前Math.NET Numerics中还没有StudentT.InvCDF.但在此期间,我们仍然可以将其作为一种解决方法进行数值评估: var student = new StudentT(0,samples.Length-1); double T = FindRoots.OfFunction(x => student.CumulativeDistribution(x)-theta,-800,800); 例如,对于16个样本和alpha 0.05,我们按预期得到2.131.如果有超过60-100个样本,这也可以用正态分布近似: double T = Nomal.InvCDF(0,theta); 总而言之: public static Tuple<double,double> B(double[] samples,double interval) { double theta = (interval + 1.0)/2; double T = FindRoots.OfFunction(x => StudentT.CDF(0,x)-theta,800); double mean = samples.Mean(); double sd = samples.StandardDeviation(); double t = T * (sd / Math.Sqrt(samples.Length)); return Tuple.Create(mean-t,mean+t); } 这还不是完整的答案,因为我理解你想以某种方式将置信区间应用于每个样本,但希望它有助于实现目标. PS:使用Math.NET Numerics v3.0.0-alpha7 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |