mtd nandflash 分析
一、MTD?的概念和层次 MTD(memory technology device?存储?技术设备?)?是用于访问?memory?设备(?ROM?、?flash?)的?Linux?的子系统。?MTD?的主要目的是为了使新的?memory?设备的驱动更加简单,为此它在硬件和上层之间提供了一个抽象的接口。?MTD?的所有源代码在?/drivers/mtd?子目录下?。[1] 传统上,?UNIX?只认识块设备和字符设备。字符设备是类似键盘或者鼠标的这类设备,你必须从它读取当前数据,但是不可以定位也没有大小。块设备有固定的大小并且可以定位, 它们恰好组织成许多字节的块,通常为?512字节。 闪存既不满足块设备描述也不满足字符设备的描述。它们表现的类似块设备,但又有所不同。比如,块设备不区分写和擦除操作。因此,一种符合闪存特性的特殊设备类型诞生了, 就是?MTD?设备。所以?MTD?既不是块设备,也不是字符设备?。?[2] 关于?MTD?的层次,网络上有一张流传盛广的图片,如下所示,但是最初我看了这幅图根本是一点概念都没有的,不过通过看代码和网上查阅资料,知道了详细一点的分层结构,也纠正了一些前期对这张图的误解。 (?以下这部分纯属个人理解,如果有误,请高人拍砖?!) 为了方便理解,先声明两点: 1. xxx?层?(MTD?原始设备层,?MTD?块设备层?)?,实现封装的代码。 2. xxx?设备?(MTD?原始设备,?MTD?块设备?)?,是?xxx?层向下封装后呈现给上层的表象就 是一个?xxx?设备。 Flash?硬件驱动层:该层的基于特定处理器和特定?flash?芯片,这里以?pxa935?和Hynix??NAND 512MB 1.8V 16-bit?为例。使用类型为?nand_chip,???pxa3xx_nand_info,dfc_context,pxa3xx_bbm?这几个结构体来实现硬 件驱动。代码位于?drivers/mtd/nand?目录下。 MTD?原始设备层: 用类型?mtd_info?的结构体来描述?MTD?原始设备,该结构体中有一 个域会指向?Flash?硬件驱动层中所有使用的结构体?(?串联形式,另外??pxa3xx_bbm?结构体是只在底层驱动中使用?)?。 ??NAND flash?在嵌入式系统中通常需要划分多个分区,系统没有运 行起来的时候分区表现为?mtd_partition?类型的结构体数组,该数组由 工程师自己决定。在系统初始化,确切的说是在nand?的驱动加载时 执行相应的?prob?函数时,会将上述数组中的每一个分区用类型为?mtd_part的结构体来描述。因为?mtd_part?结构体中内嵌了一个?mtd_info?的结构体,所以每一个分区在系统看来都是一个?MTD?原始 设备,另外?mtd_part?种还有一个?master?指针,指向描述整片?flash原 始设备的?mtd_info?结构体,所以这个描述整片?nand?的?mtd_info?结构 体也被叫做主分区。 ??在?MTD?原始设备层和其上层?MTD?块设备层?(FTL)?活跃着一个牛?X?的指针数组?mtd_table,定义于文件?mtdcore.c?中,该数组就是所有?MTD?原始设备的指针列表?(?当然有数量限制,这里限制在?32?范围内?)?。 不过上面所说的主分区没有在?mtd_table?之列。 ???????如果你系统中有?2?片?nand flash?,每个有?8?个分区,那么系统中总 共存在有?18?个?mtd_info?结构体对象,?mtd_table?数组中有?16?个指针 已经有归属。 本层和其上层?FTL?之间就全靠?mtd_table?数组和?mtd_notifiers?链表来????????? 联系了?,至于如何联系的,下文再详细解释。 MTD?块设备层: 该层也叫flash?翻译层?(FTL)?。以前为了在?MTD?设备上使用某种传统 的文件系统,?linux?系统中存在一个叫做?flash?翻译层?(FTL)?,该?FTL?是在?MTD?原始设备的基础上模拟出块设备,所以?FTL?以下的所有内 容呈现给上层的就是一个块设备。这样可以使用通用的块设备的接口 了。 这里也存在一个著名的结构体指针数组,定义于?mtdblock.c?文件中, 其中的每一个指针均指向一个?struct mtdblk_dev?的类型的对象,每一 个?struct mtdblk_dev?类型的对象都是一个MTD?块设备。 网上流传着说使用该?FTL?如何不好,这种观点其实是基于使用传统 文件系统存在的问题,现在有专门针对?nand flash?的?yaffs?日志型文 件系统了。所以那种掉电丢失数据的风险降低到了很小很小。 通用磁盘层:????再上层就是通用磁盘层了,其实每个分区在最后都是向通用磁盘层注 册成了一个?disk?来使用的,后面分析代码会看到这部分。当然对于?block?层的分析不在本文之中讨论。
本来最初的目的只是为了研究内核中nand的驱动,但好奇心太强,忍不住往上层追溯,然后再往下层跟踪。这个过程中,
?特别是在block层,yaffs文件系统和用户空间中相关的分析,其实仅仅只是找到了他们之间的关键联系点而已,没有深 ?入详细分析。 ? ?* linux2.6.29 ?* pxa935 ?* Hynix NAND 512MB 1.8V 16-bit ?* 李枝果/lizgo 2010-11-8 lizhiguo0532@163.com ?* 由于本人水平有限,望读者阅读时三思,同时也指正我的错误,谢谢! ?话说MTD子系统向上层提供了几种在用户空间可以直接使用的接口:Raw char device、Raw block device、FTL、NFTL、 ?JFFS(2)。前文中主要讨论的yaffs文件系统没有包含在其中,因为yaffs是直接建立在MTD原始设备层之上的。在nand驱动 ?注册的时候,会在probe函数中将nand的每个分区通过mtd块设备层、通用磁盘层、block层向内核注册成一个block设备。 ?另外挂载yaffs文件系统的时候呢,就会通过设备节点找到block层中对应的block_device结构体,最后在填充超级块的时候 ?直接通过主次设备号在mtd_table[]中找到对应的mtd_info结构体。而且在yaffs文件系统层封装的读写等函数中,也是将 ?找到的mtd_info结构体传入,直接利用了mtd_info结构体中的相关读写函数指针来进行底层的读写。 ?本文主要讨论的接口是Raw block device,也就是传说中的mtdblock,本文中称为mtdblock翻译层, ?主要集中在文件drivers/mtd/mtdblock.c 一、init_mtdblock() static struct mtd_blktrans_ops mtdblock_tr = { ?.name? = "mtdblock", ?.major? = 31,51); font-family:Arial; font-size:14px; line-height:26px">?.part_bits = 0,51); font-family:Arial; font-size:14px; line-height:26px">?.blksize? = 512,51); font-family:Arial; font-size:14px; line-height:26px">?.open? = mtdblock_open,51); font-family:Arial; font-size:14px; line-height:26px">?.flush? = mtdblock_flush,51); font-family:Arial; font-size:14px; line-height:26px">?.release = mtdblock_release,51); font-family:Arial; font-size:14px; line-height:26px">?.readsect = mtdblock_readsect,51); font-family:Arial; font-size:14px; line-height:26px">?.writesect = mtdblock_writesect,51); font-family:Arial; font-size:14px; line-height:26px">?.add_mtd = mtdblock_add_mtd,51); font-family:Arial; font-size:14px; line-height:26px">?.remove_dev = mtdblock_remove_dev,51); font-family:Arial; font-size:14px; line-height:26px">?.owner? = THIS_MODULE,51); font-family:Arial; font-size:14px; line-height:26px">}; static int __init init_mtdblock(void) { ?return register_mtd_blktrans(&mtdblock_tr); } int register_mtd_blktrans(struct mtd_blktrans_ops *tr) ?int ret,i; ?/* Register the notifier if/when the first device type is ??? registered,to prevent the link/init ordering from fucking ??? us over. */? ?// 注册一个该接口的用户通知器,在分区动态添加或删除的时候被调用, ?// 通知使用该接口的用户做出相应动作。 ?// 关于这个用户通知器后面再介绍 ?if (!blktrans_notifier.list.next) ? register_mtd_user(&blktrans_notifier); ?tr->blkcore_priv = kzalloc(sizeof(*tr->blkcore_priv),GFP_KERNEL); ?if (!tr->blkcore_priv) ? return -ENOMEM; ?mutex_lock(&mtd_table_mutex); ?ret = register_blkdev(tr->major,tr->name); // 块设备注册,major_names ?// 此时可以在proc/devices中看到注册的该设备 ?if (ret) { ? printk(KERN_WARNING "Unable to register %s block device on major %d: %d/n",51); font-family:Arial; font-size:14px; line-height:26px">???????? tr->name,tr->major,ret); ? kfree(tr->blkcore_priv); ? mutex_unlock(&mtd_table_mutex); ? return ret; ?} ?spin_lock_init(&tr->blkcore_priv->queue_lock);? // 初始化请求队列锁 ?tr->blkcore_priv->rq = blk_init_queue(mtd_blktrans_request,&tr->blkcore_priv->queue_lock); ?// 初始化请求队列头和安装请求处理函数mtd_blktrans_request() ?if (!tr->blkcore_priv->rq) { ? unregister_blkdev(tr->major,tr->name); ?tr->blkcore_priv->rq->queuedata = tr; // 保存该翻译层的操作集? , &mtdblock_tr ?blk_queue_hardsect_size(tr->blkcore_priv->rq,tr->blksize); ?if (tr->discard) ? blk_queue_set_discard(tr->blkcore_priv->rq,51); font-family:Arial; font-size:14px; line-height:26px">????????? blktrans_discard_request); ?tr->blkshift = ffs(tr->blksize) - 1; ?tr->blkcore_priv->thread = kthread_run(mtd_blktrans_thread,tr,51); font-family:Arial; font-size:14px; line-height:26px">?? "%sd",tr->name);????? // 创建内核线程mtd_blktrans_thread ?if (IS_ERR(tr->blkcore_priv->thread)) { ? blk_cleanup_queue(tr->blkcore_priv->rq); ? return PTR_ERR(tr->blkcore_priv->thread); ?INIT_LIST_HEAD(&tr->devs);// 该链表用来挂接使用该翻译层的所有设备 ?list_add(&tr->list,&blktrans_majors); ?// 所有翻译层通过blktrans_majors链表来链接在一起 ?for (i=0; i<MAX_MTD_DEVICES; i++) { ? if (mtd_table[i] && mtd_table[i]->type != MTD_ABSENT) ?? tr->add_mtd(tr,mtd_table[i]); ?// 对mtd_table中的所有分区调用该翻译层操作集中的add_mtd函数 ?mutex_unlock(&mtd_table_mutex); ?return 0; ?使用函数blk_init_queue初始化一个请求队列和安装一个请求处理函数mtd_blktrans_request(): static void mtd_blktrans_request(struct request_queue *rq) ?{ ? struct mtd_blktrans_ops *tr = rq->queuedata; ? wake_up_process(tr->blkcore_priv->thread);? // 唤醒内核线程 ?接下来就创建一个内核线程:mtd_blktrans_thread() static int mtd_blktrans_thread(void *arg) ?struct mtd_blktrans_ops *tr = arg; ?struct request_queue *rq = tr->blkcore_priv->rq; ?/* we might get involved when memory gets low,so use PF_MEMALLOC */ ?current->flags |= PF_MEMALLOC; ?spin_lock_irq(rq->queue_lock); ?while (!kthread_should_stop()) { ? struct request *req; ? struct mtd_blktrans_dev *dev; ? int res = 0; ? req = elv_next_request(rq);? // 获取对列中第一个未完成的请求 ? if (!req) {????? // 如果请求为空将线程置于睡眠状态 ?? set_current_state(TASK_INTERRUPTIBLE); ?? spin_unlock_irq(rq->queue_lock); ?? schedule(); ?? spin_lock_irq(rq->queue_lock); ?? continue; ? } ?? ? /* ? 一个请求队列管理着很多请求,但是每一个请求都只能针对一个块设备gendisk。 ? 所以每一个请求被创建出来后都会指向它的请求对象gendisk。 ? 这个指向关系在函数__make_request()->init_request_from_bio()->blk_rq_bio_prep() ? -> rq->rq_disk = bio->bi_bdev->bd_disk ? 中建立。 ? */? ? dev = req->rq_disk->private_data; ? tr = dev->tr; ? spin_unlock_irq(rq->queue_lock); ? mutex_lock(&dev->lock); ? res = do_blktrans_request(tr,dev,req); ? 在函数do_blktrans_request(tr,req)中 ? 根据请求的数据传输方向来决定调用读或写函数进行数据传输 ? tr->readsect(dev,block,buf) ? tr->writesect(dev,51); font-family:Arial; font-size:14px; line-height:26px">? */ ? //如果res是0表示不能成功完成请求,为非0表示成功完成请求 ? mutex_unlock(&dev->lock); ? spin_lock_irq(rq->queue_lock); ? end_request(req,res); ?spin_unlock_irq(rq->queue_lock); 二、用户通知器 结构体定义: struct mtd_notifier { ?void (*add)(struct mtd_info *mtd); ?void (*remove)(struct mtd_info *mtd); ?struct list_head list; 有两个方法和一个链表挂钩,参数均为mtd_info指针。 在drivers/mtd/mtd_blkdevs.c中定义了下面的块翻译层通知器 static struct mtd_notifier blktrans_notifier = { ?.add = blktrans_notify_add,51); font-family:Arial; font-size:14px; line-height:26px">?.remove = blktrans_notify_remove,51); font-family:Arial; font-size:14px; line-height:26px">该通知器被FTL、NFTL、mtdblock翻译层使用。 ... /* Register the notifier if/when the first device type is ? registered,51); font-family:Arial; font-size:14px; line-height:26px">? us over. */? if (!blktrans_notifier.list.next) ? register_mtd_user(&blktrans_notifier); // 只有第一个翻译层注册的时候该函数才会调用 void register_mtd_user (struct mtd_notifier *new) ?int i; ?list_add(&new->list,&mtd_notifiers); ?// 将这个新的用户通知器添加到全局链表mtd_notifiers中(该链表中还可能存在其他用户通知器) ? __module_get(THIS_MODULE);// 增加模块引用计数 ?for (i=0; i< MAX_MTD_DEVICES; i++) ? if (mtd_table[i]) ?? new->add(mtd_table[i]); ?? // 对mtd_table中的所有分区调用该翻译层操作集中的add_mtd函数,第一次注册该工作在后面会重复再做一次 ?? // blktrans_notify_add() static void blktrans_notify_add(struct mtd_info *mtd) ?struct mtd_blktrans_ops *tr; ?if (mtd->type == MTD_ABSENT) ? return; ?list_for_each_entry(tr,&blktrans_majors,list) ? tr->add_mtd(tr,mtd); ? // blktrans_majors链表管理着所有的翻译层操作集结构体 ? // 该处的意思是对于传入的同一个mtd_info结构体,所有的翻译层都会调用自己的 ? // add_mtd函数(这些函数都不一样,对于mtdblock层该函数是mtdblock_add_mtd()) 在系统启动的时候,register_mtd_blktrans(&mtdblock_tr)执行的时候,mtd_table数组中是空的,所以就不会执行到翻译层 的add_mtd函数上来,那么在又在什么时候调用了翻译层的add_mtd()函数了呢?请看下面 三、将分区向上层注册成block device。 ?// pxa3xx_nand.c ?在注册nand驱动的时候: ?pxa3xx_nand_init() ?--> platform_driver_register() ?? --> ...经过注册和设备匹配后调用probe()函数 ???? --> pxa3xx_nand_probe() ?????? --> ... ?????? --> add_mtd_partitions(monahans_mtd,pdata->parts,pdata->nr_parts) ???????? --> add_one_partition() ?????????? --> add_mtd_device() ???????????? --> list_for_each_entry(not,&mtd_notifiers,51); font-family:Arial; font-size:14px; line-height:26px">???????????????? not->add(mtd); ?????????????? // 这里就是调用mtd_notifiers链表中所有用户通知器的add函数,以mtdblock的用户通知 ?????????????? // 器为例,那么就是调用函数 mtdblock_add_mtd()。这就是证实了当添加一个分区的时候 ?????????????? // 用户通知器的add函数被调用,那么当移除分区的时候,remove函数就会被调用,只是 ?????????????? // 我们这里没有移除的分区动作。 代码如下: static int pxa3xx_nand_probe(struct platform_device *pdev) ?... ?return add_mtd_partitions(monahans_mtd,pdata->nr_parts); int add_mtd_partitions(struct mtd_info *master,51); font-family:Arial; font-size:14px; line-height:26px">???????? const struct mtd_partition *parts,51); font-family:Arial; font-size:14px; line-height:26px">???????? int nbparts) ?struct mtd_part *slave; ?uint64_t cur_offset = 0; ?printk(KERN_NOTICE "Creating %d MTD partitions on /"%s/":/n",nbparts,master->name); ?for (i = 0; i < nbparts; i++) { ? slave = add_one_partition(master,parts + i,i,cur_offset); ? if (!slave) ?? return -ENOMEM; ? cur_offset = slave->offset + slave->mtd.size; static struct mtd_part *add_one_partition(struct mtd_info *master,51); font-family:Arial; font-size:14px; line-height:26px">? const struct mtd_partition *part,int partno,51); font-family:Arial; font-size:14px; line-height:26px">? uint64_t cur_offset) ?/* allocate the partition structure */ ?slave = kzalloc(sizeof(*slave),51); font-family:Arial; font-size:14px; line-height:26px">?if (!slave) { ? printk(KERN_ERR"memory allocation error while creating partitions for /"%s/"/n",51); font-family:Arial; font-size:14px; line-height:26px">?? master->name); ? del_mtd_partitions(master); ? return NULL; ?list_add(&slave->list,&mtd_partitions); ?// mtd_partitions 用于在MTD原始设备层统一管理所有分区信息 ?// static LIST_HEAD(mtd_partitions) 本文件中定义 ?/* set up the MTD object for this partition */ ?slave->mtd.type = master->type; ?slave->mtd.flags = master->flags & ~part->mask_flags; ?slave->mtd.size = part->size;? // 分区大小 ?slave->mtd.writesize = master->writesize; ?slave->mtd.oobsize = master->oobsize; ?slave->mtd.oobavail = master->oobavail; ?slave->mtd.subpage_sft = master->subpage_sft; ?slave->mtd.name = part->name;? // 分区名字 ?slave->mtd.owner = master->owner; ?slave->mtd.read = part_read;? // 分区读写函数 ?slave->mtd.write = part_write; ?if (master->panic_write) ? slave->mtd.panic_write = part_panic_write; ?if (master->point && master->unpoint) { ? slave->mtd.point = part_point; ? slave->mtd.unpoint = part_unpoint; ?if (master->read_oob) ? slave->mtd.read_oob = part_read_oob; ?if (master->write_oob) ? slave->mtd.write_oob = part_write_oob; ?if (master->read_user_prot_reg) ? slave->mtd.read_user_prot_reg = part_read_user_prot_reg; ?if (master->read_fact_prot_reg) ? slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; ?if (master->write_user_prot_reg) ? slave->mtd.write_user_prot_reg = part_write_user_prot_reg; ?if (master->lock_user_prot_reg) ? slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; ?if (master->get_user_prot_info) ? slave->mtd.get_user_prot_info = part_get_user_prot_info; ?if (master->get_fact_prot_info) ? slave->mtd.get_fact_prot_info = part_get_fact_prot_info; ?if (master->sync) ? slave->mtd.sync = part_sync; ?if (!partno && master->suspend && master->resume) { ?? slave->mtd.suspend = part_suspend; ?? slave->mtd.resume = part_resume; ?if (master->writev) ? slave->mtd.writev = part_writev; ?if (master->lock) ? slave->mtd.lock = part_lock; ?if (master->unlock) ? slave->mtd.unlock = part_unlock; ?if (master->block_isbad) ? slave->mtd.block_isbad = part_block_isbad; ?if (master->block_markbad) ? slave->mtd.block_markbad = part_block_markbad; ?slave->mtd.erase = part_erase; ?slave->master = master;?? // 该分区的主分区 ?slave->offset = part->offset; // 该分区偏移 ?slave->index = partno;?? // 分区索引 ?if (slave->offset == MTDPART_OFS_APPEND) ? slave->offset = cur_offset; ?if (slave->offset == MTDPART_OFS_NXTBLK) { ? if (mtd_mod_by_eb(cur_offset,master) != 0) { ?? /* Round up to next erasesize */ ?? slave->offset = (mtd_div_by_eb(cur_offset,master) + 1) * master->erasesize; ?? printk(KERN_NOTICE "Moving partition %d: " ????????? "0x%012llx -> 0x%012llx/n",partno,51); font-family:Arial; font-size:14px; line-height:26px">????????? (unsigned long long)cur_offset,(unsigned long long)slave->offset); ?if (slave->mtd.size == MTDPART_SIZ_FULL) ? slave->mtd.size = master->size - slave->offset; ?printk(KERN_NOTICE "0x%012llx-0x%012llx : /"%s/"/n",(unsigned long long)slave->offset,51); font-family:Arial; font-size:14px; line-height:26px">? (unsigned long long)(slave->offset + slave->mtd.size),slave->mtd.name); ?// 打印分区表信息 ?/* let's do some sanity checks */ ?if (slave->offset >= master->size) { ? /* let's register it anyway to preserve ordering */ ? slave->offset = 0; ? slave->mtd.size = 0; ? printk(KERN_ERR"mtd: partition /"%s/" is out of reach -- disabled/n",51); font-family:Arial; font-size:14px; line-height:26px">?? part->name); ? goto out_register; ?if (slave->offset + slave->mtd.size > master->size) { ? printk(KERN_WARNING"mtd: partition /"%s/" extends beyond the end of device /"%s/" -- size truncated to %#llx/n",51); font-family:Arial; font-size:14px; line-height:26px">?? part->name,master->name,(unsigned long long)slave->mtd.size); ?if (master->numeraseregions > 1) { ? /* Deal with variable erase size stuff */ ? int i,max = master->numeraseregions; ? u64 end = slave->offset + slave->mtd.size; ? struct mtd_erase_region_info *regions = master->eraseregions; ? /* Find the first erase regions which is part of this ?? * partition. */ ? for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ?? ; ? /* The loop searched for the region _behind_ the first one */ ? i--; ? /* Pick biggest erasesize */ ? for (; i < max && regions[i].offset < end; i++) { ?? if (slave->mtd.erasesize < regions[i].erasesize) { ??? slave->mtd.erasesize = regions[i].erasesize; ?? } ? BUG_ON(slave->mtd.erasesize == 0); ?} else { ? /* Single erase size */ ? slave->mtd.erasesize = master->erasesize;? // 分区擦除大小赋值 ?if ((slave->mtd.flags & MTD_WRITEABLE) && ???? mtd_mod_by_eb(slave->offset,&slave->mtd)) { ? /* Doesn't start on a boundary of major erase size */ ? /* FIXME: Let it be writable if it is on a boundary of ?? * _minor_ erase size though */ ? slave->mtd.flags &= ~MTD_WRITEABLE; ? printk(KERN_WARNING"mtd: partition /"%s/" doesn't start on an erase block boundary -- force read-only/n",51); font-family:Arial; font-size:14px; line-height:26px">???? mtd_mod_by_eb(slave->mtd.size,51); font-family:Arial; font-size:14px; line-height:26px">? printk(KERN_WARNING"mtd: partition /"%s/" doesn't end on an erase block -- force read-only/n",51); font-family:Arial; font-size:14px; line-height:26px">?slave->mtd.ecclayout = master->ecclayout; ?if (master->block_isbad) { ? uint64_t offs = 0; ? while (offs < slave->mtd.size) { ?? if (master->block_isbad(master,51); font-family:Arial; font-size:14px; line-height:26px">????? offs + slave->offset)) ??? slave->mtd.ecc_stats.badblocks++; // 分区内坏块检查统计 ?? offs += slave->mtd.erasesize; out_register: ?if (part->mtdp) { ? /* store the object pointer (caller may or may not register it*/ ? *part->mtdp = &slave->mtd; ? slave->registered = 0; ? /* register our partition */ ? add_mtd_device(&slave->mtd);????? // importment ? // 将该从分区作为MTD原始设备加入到mtd_table中,成功返回0 ? // MTD原始设备层和MTD设备层就是依靠mtd_table来联系的 ? slave->registered = 1; ?return slave; int add_mtd_device(struct mtd_info *mtd) ?BUG_ON(mtd->writesize == 0); ?for (i=0; i < MAX_MTD_DEVICES; i++) ? if (!mtd_table[i]) { ?? struct mtd_notifier *not; ?? mtd_table[i] = mtd;?? // 填充mtd_table[]数组,mtd原始设备层和mtd块设备层通过mtd_table[]联系在了一起 ?? mtd->index = i;???? // mtd_table[]数组的下标赋给mtd->index ?? mtd->usecount = 0; ?? if (is_power_of_2(mtd->erasesize)) ??? mtd->erasesize_shift = ffs(mtd->erasesize) - 1; ?? else ??? mtd->erasesize_shift = 0; ?? if (is_power_of_2(mtd->writesize)) ??? mtd->writesize_shift = ffs(mtd->writesize) - 1; ??? mtd->writesize_shift = 0; ?? mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; ?? mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; ?? /* Some chips always power up locked. Unlock them now */ ?? if ((mtd->flags & MTD_WRITEABLE) ?????? && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) { ??? if (mtd->unlock(mtd,mtd->size)) ???? printk(KERN_WARNING ??????????? "%s: unlock failed," ??????????? "writes may not work/n",51); font-family:Arial; font-size:14px; line-height:26px">??????????? mtd->name); ?? DEBUG(0,"mtd: Giving out device %d to %s/n",mtd->name); ?? /* No need to get a refcount on the module containing ????? the notifier,since we hold the mtd_table_mutex */ ?? list_for_each_entry(not,51); font-family:Arial; font-size:14px; line-height:26px">???? not->add(mtd);??????? // 只要底层向上层添加一个mtd原始设备的话,那么就会遍历所有用户通知器 ??????????????????? // 然后调用其add函数,再向mtd块设备层的上层通用磁盘层和block层注册。 ??????????????????? // 对于mtdblock翻译层,其add_mtd函数指针指向mtdblock_add_mtd() ?? mutex_unlock(&mtd_table_mutex); ?? /* We _know_ we aren't being removed,because ????? our caller is still holding us here. So none ????? of this try_ nonsense,and no bitching about it ????? either. :) */ ?? __module_get(THIS_MODULE); ?? return 0; ?return 1; ////////////////////////////////////////////////////////////////////////////////////////////// struct mtd_blktrans_dev { ?struct mtd_info *mtd; ?struct mutex lock; ?int devnum; ?unsigned long size; ?int readonly; ?void *blkcore_priv; /* gendisk in 2.5,devfs_handle in 2.4 */ static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr,struct mtd_info *mtd) ?struct mtd_blktrans_dev *dev = kzalloc(sizeof(*dev),51); font-family:Arial; font-size:14px; line-height:26px">?if (!dev) ?// 这里将分区作为的MTD设备联系在了一起,mtd_table ?dev->mtd = mtd; ?dev->devnum = mtd->index; // 分区表的索引值 ?dev->size = mtd->size >> 9; // 该分区的大小以512为单位来计算 ?dev->tr = tr;??? // 操作集 ?if (!(mtd->flags & MTD_WRITEABLE)) ? dev->readonly = 1; ?add_mtd_blktrans_dev(dev); ?// 后面详解 int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) ?struct mtd_blktrans_ops *tr = new->tr; ?struct mtd_blktrans_dev *d; ?int last_devnum = -1; ?struct gendisk *gd; ?if (mutex_trylock(&mtd_table_mutex)) { ? BUG(); ?list_for_each_entry(d,&tr->devs,list) { ? if (new->devnum == -1) { ?? /* Use first free number */ ?? if (d->devnum != last_devnum+1) { ??? /* Found a free devnum. Plug it in here */ ??? new->devnum = last_devnum+1; ??? list_add_tail(&new->list,&d->list); ??? goto added; ? } else if (d->devnum == new->devnum) { ?? /* Required number taken */ ?? return -EBUSY; ?? // 这里返回上层没有错误判断,因此也就没有释放掉上层函数开辟的struct mtd_blktrans_dev ?? // 的内存空间,存在内存泄露,这里应该算是一个内核bug吧,不过呢,这个bug基本上是不会出现的 ?? // 如果你的分区不会动态被增加或者删除的话,这里就不会返回这个错误的? ? } else if (d->devnum > new->devnum) { ?? /* Required number was free */ ?? list_add_tail(&new->list,51); font-family:Arial; font-size:14px; line-height:26px">?? goto added; ? last_devnum = d->devnum; ?if (new->devnum == -1) ? new->devnum = last_devnum+1; ?if ((new->devnum << tr->part_bits) > 256) { ? return -EBUSY; ?list_add_tail(&new->list,&tr->devs); ?// 翻译层操作集管理者所有属于该层的设备 ?added: ?mutex_init(&new->lock); ?if (!tr->writesect) ? new->readonly = 1; ?gd = alloc_disk(1 << tr->part_bits);??????? // note 1 ?// 分配gendisk结构体空间,并做一些初始的设置 ?if (!gd) { ? list_del(&new->list); ?gd->major = tr->major;?????????????? // mtdblock?,31 ?gd->first_minor = (new->devnum) << tr->part_bits;? // mtd_table[]下标 ?gd->fops = &mtd_blktrans_ops;??????????? // 操作函数集 ?if (tr->part_bits)? // 0 ? if (new->devnum < 26) ?? snprintf(gd->disk_name,sizeof(gd->disk_name),51); font-family:Arial; font-size:14px; line-height:26px">???? "%s%c",tr->name,'a' + new->devnum); ? else ???? "%s%c%c",51); font-family:Arial; font-size:14px; line-height:26px">???? 'a' - 1 + new->devnum / 26,51); font-family:Arial; font-size:14px; line-height:26px">???? 'a' + new->devnum % 26); ?else ? snprintf(gd->disk_name,51); font-family:Arial; font-size:14px; line-height:26px">??? "%s%d",new->devnum); ?????????????????????????? // gd->disk_name = mtdblock{0 - 31} ?/* 2.5 has capacity in units of 512 bytes while still ??? having BLOCK_SIZE_BITS set to 10. Just to keep us amused. */ ?set_capacity(gd,(new->size * tr->blksize) >> 9); ?gd->private_data = new; ?new->blkcore_priv = gd;? // 互相指向对方 ?gd->queue = tr->blkcore_priv->rq; // 该mtd设备的请求队列 ?if (new->readonly) ? set_disk_ro(gd,1); ?add_disk(gd);? // 向上层添加一个gendisk note2 /** note1 gd = alloc_disk(1) **/ struct gendisk *alloc_disk(int minors) ?return alloc_disk_node(minors,-1);? // note1-1 /**** note1-1? alloc_disk_node(1,-1) ****/ struct gendisk *alloc_disk_node(int minors,int node_id) ?struct gendisk *disk; ?disk = kmalloc_node(sizeof(struct gendisk),51); font-family:Arial; font-size:14px; line-height:26px">??? GFP_KERNEL | __GFP_ZERO,node_id);?? // node_id就是NUMA系统中的节点号 ?if (disk) { ? if (!init_part_stats(&disk->part0)) { ?? kfree(disk); ?? return NULL; ? disk->node_id = node_id;????????? // -1 ? if (disk_expand_part_tbl(disk,0)) { ?? free_part_stats(&disk->part0); ? disk->part_tbl->part[0] = &disk->part0; ? disk->minors = minors;?????????? // 1 ? rand_initialize_disk(disk); ? disk_to_dev(disk)->class = &block_class;? // #define disk_to_dev(disk) (&(disk)->part0.__dev) ? disk_to_dev(disk)->type = &disk_type; ? device_initialize(disk_to_dev(disk)); ? INIT_WORK(&disk->async_notify,51); font-family:Arial; font-size:14px; line-height:26px">?? media_change_notify_thread); ?return disk; /** note2 add_disk(gd) **/ void add_disk(struct gendisk *disk) ?struct backing_dev_info *bdi; ?dev_t devt; ?int retval; ?/* minors == 0 indicates to use ext devt from part0 and should ? * be accompanied with EXT_DEVT flag.? Make sure all ? * parameters make sense. ?WARN_ON(disk->minors && !(disk->major || disk->first_minor)); ?WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); ?disk->flags |= GENHD_FL_UP; ?retval = blk_alloc_devt(&disk->part0,&devt);?? // note2-1 ?if (retval) { ? WARN_ON(1); ?disk_to_dev(disk)->devt = devt;? // disk->part0.__dev->devt = devt ?// 主次设备号 ?/* ->major and ->first_minor aren't supposed to be ? * dereferenced from here on,but set them just in case. ?disk->major = MAJOR(devt);??? // 31? ?disk->first_minor = MINOR(devt); // {0 - 31} ?blk_register_region(disk_devt(disk),disk->minors,NULL,51); font-family:Arial; font-size:14px; line-height:26px">?????? exact_match,exact_lock,disk); ?register_disk(disk);?????? // note2-2 ?blk_register_queue(disk); ?bdi = &disk->queue->backing_dev_info; ?bdi_register_dev(bdi,disk_devt(disk)); ?retval = sysfs_create_link(&disk_to_dev(disk)->kobj,&bdi->dev->kobj,51); font-family:Arial; font-size:14px; line-height:26px">?????? "bdi"); ?WARN_ON(retval); /**** note2-1? blk_alloc_devt() ****/ int blk_alloc_devt(struct hd_struct *part,dev_t *devt) ?struct gendisk *disk = part_to_disk(part); ?int idx,rc; // part->partno = 0,disk->minors = 1,disk->major = 31,disk->first_minor = {0 - 31} ?/* in consecutive minor range? */ ?if (part->partno < disk->minors) { ? *devt = MKDEV(disk->major,disk->first_minor + part->partno);? // 最后组织的主次设备号为31<<20 | {0 ~ 31} ? return 0; ?/* allocate ext devt */????? // 另外的方式来分配主次设备号 ?do { ? if (!idr_pre_get(&ext_devt_idr,GFP_KERNEL)) ? rc = idr_get_new(&ext_devt_idr,part,&idx); ?} while (rc == -EAGAIN); ?if (rc) ? return rc; ?if (idx > MAX_EXT_DEVT) { ? idr_remove(&ext_devt_idr,idx); ?*devt = MKDEV(BLOCK_EXT_MAJOR,blk_mangle_minor(idx)); /**** note2-2? register_disk(disk) ****/ void register_disk(struct gendisk *disk) ?struct device *ddev = disk_to_dev(disk); ?struct block_device *bdev; ?struct disk_part_iter piter; ?struct hd_struct *part; ?int err; ?ddev->parent = disk->driverfs_dev; ?dev_set_name(ddev,disk->disk_name);??? // mtdblock{0 - 31} ?/* delay uevents,until we scanned partition table */ ?ddev->uevent_suppress = 1; ?if (device_add(ddev))??????????? // 将该设备添加到系统设备树中 #ifndef CONFIG_SYSFS_DEPRECATED ?err = sysfs_create_link(block_depr,&ddev->kobj,51); font-family:Arial; font-size:14px; line-height:26px">??? kobject_name(&ddev->kobj)); ?if (err) { ? device_del(ddev); #endif ?disk->part0.holder_dir = kobject_create_and_add("holders",&ddev->kobj); ?disk->slave_dir = kobject_create_and_add("slaves",51); font-family:Arial; font-size:14px; line-height:26px">?/* No minors to use for partitions */ ?if (!disk_partitionable(disk)) ? goto exit; ?/* No such device (e.g.,media were just removed) */ ?if (!get_capacity(disk)) ?bdev = bdget_disk(disk,0);?? // note2-2-1 ?if (!bdev) ?bdev->bd_invalidated = 1; ?err = blkdev_get(bdev,FMODE_READ); // 获取一次以验证 ?if (err < 0) ?blkdev_put(bdev,FMODE_READ); exit: ?/* announce disk after possible partitions are created */ ?ddev->uevent_suppress = 0; ?kobject_uevent(&ddev->kobj,KOBJ_ADD); ?/* announce possible partitions */ ?disk_part_iter_init(&piter,disk,0); ?while ((part = disk_part_iter_next(&piter))) ? kobject_uevent(&part_to_dev(part)->kobj,51); font-family:Arial; font-size:14px; line-height:26px">?disk_part_iter_exit(&piter); /****** note2-2-1? bdev = bdget_disk(disk,0) ******/ struct block_device *bdget_disk(struct gendisk *disk,int partno) ?struct block_device *bdev = NULL; ?part = disk_get_part(disk,partno); ?if (part) ? bdev = bdget(part_devt(part));? // note 2-2-1-1 ? // 根据主次设备号得到block_device结构体 ?disk_put_part(part); ?return bdev; /******** note2-2-1-1? bdev = bdget(part_devt(part)) ********/ // fs/block_dev.c struct bdev_inode { ?struct block_device bdev; ?struct inode vfs_inode; static inline struct bdev_inode *BDEV_I(struct inode *inode) ?return container_of(inode,struct bdev_inode,vfs_inode); inline struct block_device *I_BDEV(struct inode *inode) ?return &BDEV_I(inode)->bdev; static inline unsigned long hash(dev_t dev) ?return MAJOR(dev)+MINOR(dev); static int bdev_test(struct inode *inode,void *data) ?return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; static int bdev_set(struct inode *inode,51); font-family:Arial; font-size:14px; line-height:26px">?BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; static LIST_HEAD(all_bdevs); struct block_device *bdget(dev_t dev) ?struct inode *inode; ?inode = iget5_locked(blockdev_superblock,hash(dev),51); font-family:Arial; font-size:14px; line-height:26px">?? bdev_test,bdev_set,&dev); ?// 该函数最终会调用函数bdev_set()将dev的值赋值给BDEV_I(inode)->bdev.bd_dev ?if (!inode) ?bdev = &BDEV_I(inode)->bdev; ?if (inode->i_state & I_NEW) { ? bdev->bd_contains = NULL; ? bdev->bd_inode = inode;? // inode关联到block_device结构体中 ? bdev->bd_block_size = (1 << inode->i_blkbits); ? bdev->bd_part_count = 0; ? bdev->bd_invalidated = 0; ? inode->i_mode = S_IFBLK; // 对应的是块设备节点 ? inode->i_rdev = dev;?? // 主次设备号关联 ? inode->i_bdev = bdev;?? // block_device结构体关联 ? /************************ ? 在使用mount挂载该设备上的文件系统时,例如上一篇文章中为了挂载nand分区中的yaffs2文件系统,那么系统是在哪个 ? 地方使用了注册时设置的这些信息呢? ? ... ? get_sb_bdev() ? --> open_bdev_exclusive() ??? --> lookup_bdev() ????? --> kern_path() ????? --> bdev = bd_acquire(inode) ??????? 这里只是取出了block_device结构体的指针 ? 而对于上面函数iget5_locked()-->bdev_set()中设置在对应block_device结构体中的主次设备号在文件系统挂载的时候 ? ,在下面这个函数中获取到后存放在超级块中。 ? --> sget() ??? --> set_bdev_super() ????? --> s->s_bdev = data;??????? // 就是open_bdev_exclusive()函数获得的block_device结构体 ????? --> s->s_dev = s->s_bdev->bd_dev;? // 主次设备号 ? 最后在yaffs2文件系统超级块填充函数yaffs_internal_read_super()中是这么使用的: ? if (MAJOR(sb->s_dev) != MTD_BLOCK_MAJOR) ?? return NULL; /* This isn't an mtd device */ ? mtd = get_mtd_device(NULL,MINOR(sb->s_dev)); // 取得对应的mtd_info结构体 ? ************************/ ? inode->i_data.a_ops = &def_blk_aops; ? mapping_set_gfp_mask(&inode->i_data,GFP_USER); ? inode->i_data.backing_dev_info = &default_backing_dev_info; ? spin_lock(&bdev_lock); ? list_add(&bdev->bd_list,&all_bdevs); ? spin_unlock(&bdev_lock); ? unlock_new_inode(inode); ?return bdev;??????? // 返回这个block_device指针 四、一点补充 static struct mtdblk_dev { ?int count; ?struct mutex cache_mutex; ?unsigned char *cache_data; ?unsigned long cache_offset; ?unsigned int cache_size; ?enum { STATE_EMPTY,STATE_CLEAN,STATE_DIRTY } cache_state; } *mtdblks[MAX_MTD_DEVICES];? // #define MAX_MTD_DEVICES 32 /* ** 这里是定义了一个指针数组,其中的每一个指针均指向一个struct mtdblk_dev ** 的类型的对象,每一个struct mtdblk_dev类型的对象都是一个MTD块设备, ** 这里的每一个指针指向的MTD块设备和mtd_table[]中元素指向的每一个 ** struct mtd_info一一对应。 ** 另外,可以看出linux最多支持32个MTD块设备 ?关于mtdblks[]指针数组,我这里是以yaffs文件系统为例,所以是不会使用到这个指针数组的,应为yaffs它是建立在mtd原始设备层上,在其封装的函数内直接使用了mtd_info结构体内的函数,而没有经过mtdblock翻译层。如果我们的系统中使用的是mtd的其他接口,比如block device,那么就会使用到这个指针数组,在哪里使用呢? ?mtdblock.c文件中定义了mtdblock翻译层的操作集: 这些mtdblks[]的指针在哪里赋值的呢?请看函数mtdblock_open()中: static int mtdblock_open(struct mtd_blktrans_dev *mbd) ?// mtd_blktrans_dev这个设备就是我们在初始化经过mtdblock翻译层向上层注册时的产物,表示了本层环境中的mtd设备 ?// mbd->mtd在mtdblock_add_mtd()函数中被赋值,就是对应的mtd原始设备 ?struct mtdblk_dev *mtdblk; ?struct mtd_info *mtd = mbd->mtd; ?int dev = mbd->devnum; ?DEBUG(MTD_DEBUG_LEVEL1,"mtdblock_open/n"); ?if (mtdblks[dev]) { ? mtdblks[dev]->count++; ?} // 如果已经打开了,那么只需要增加引用计数 ?/* OK,it's not open. Create cache info for it */ ?mtdblk = kzalloc(sizeof(struct mtdblk_dev),GFP_KERNEL); // 否则,分配空间 ?if (!mtdblk) ?mtdblk->count = 1;? // 引用计数初始化成1 ?mtdblk->mtd = mtd;? // 重要的联系 ?mutex_init(&mtdblk->cache_mutex); ?mtdblk->cache_state = STATE_EMPTY; ?if ( !(mtdblk->mtd->flags & MTD_NO_ERASE) && mtdblk->mtd->erasesize) { ? mtdblk->cache_size = mtdblk->mtd->erasesize; ? mtdblk->cache_data = NULL; ?mtdblks[dev] = mtdblk; // mtdblks指针数组中相应位置设置 } 其实mtd块设备层和mtd原始设备层的分界线很明显,只是通过 ?2.6版本的linux内核驱动模型中流传着一个时髦的词:“platform”,其中也存在platform device和platform driver, 内核中使用platform bus统一管理这些设备和驱动,所以注册包括device和driver的注册。 一、platform device注册 ?MACHINE_START和MACHINE_END定义的结构体是平台相关的,这里定义如下: ?MACHINE_START(BENZGLB,"Benzglb") ? .phys_io??????? = 0x40000000,? .boot_params??? = 0xa0000100,? .io_pg_offst??? = (io_p2v(0x40000000) >> 18) & 0xfffc,?? ? .map_io???????? = pxa_map_io,? // start_kernel()-->setup_arch()-->paging_init()-->devicemaps_init()-->pxa_map_io ? .init_irq?????? = pxa3xx_init_irq,? // 在setup_arch()中被赋值给全局函数指针init_arch_irq ? // start_kernel()-->init_IRQ()-->"init_arch_irq()"间接调用pxa3xx_init_irq ? .timer????????? = &pxa_timer,? // 在setup_arch()中被赋值给全局struct sys_timer对象指针system_timer ? // start_kernel()-->time_init-->"system_timer->init()"间接调用pxa_timer.init = pxa_timer_init() ? .init_machine?? = benzglb_init,? // 在setup_arch()中被赋值给全局函数指针init_machine ? // 由于arch_initcall(customize_machine),所以在start_kernel()-->rest_init() ? // -->kernel_init()-->do_basic_setup()-->do_initcalls()的第3个等级上被调用 ? // init.h ?MACHINE_END ?/******************************* ?其中的宏定义于文件:arch/arm/include/asm/mach/arch.h ?#define MACHINE_START(_type,_name)?? / ?static const struct machine_desc __mach_desc_##_type / ? __used?????? / ? __attribute__((__section__(".arch.info.init"))) = { / ? .nr? = MACH_TYPE_##_type,? / ? .name? = _name,? ?#define MACHINE_END??? / ?}; ?将上面的展开,实际上就是定义了一个结构体: ?static const struct machine_desc __mach_desc_BENZGLB?? __used / ????????????????? __attribute__((__section__(".arch.info.init"))) = { ????????????????? .nr? = MACH_TYPE_BENZGLB,????????????????? .name? = "Benzglb",????????????????? .phys_io??????? = 0x40000000,??????????????????? .boot_params??? = 0xa0000100,??????????????????? .io_pg_offst??? = (io_p2v(0x40000000) >> 18) & 0xfffc,??????????????????? .map_io???????? = pxa_map_io,??????????????????? .init_irq?????? = pxa3xx_init_irq,??????????????????? .timer????????? = &pxa_timer,??????????????????? .init_machine?? = benzglb_init,??????????????????? }; ?*******************************/ ?benzglb_init()函数可谓是重量级的了,初始化了很多东西。但是是在哪里调用该函数的呢?或许从上面的注释你也可以 ?注意到了,下面就再来wlak一下: ?start_kernel() ?--> setup_arch() ?? --> ... ?? --> init_machine = mdesc->init_machine; ?? --> ... ?? init_machine是文件arch/arm/kernel/setup.c中的静态全局变量,定义和调用如下: ?? static void (*init_machine)(void) __initdata; ?? static int __init customize_machine(void) ?? { ??? /* customizes platform devices,or adds new ones */ ??? if (init_machine) ???? init_machine(); ??? return 0; ?? } ?? arch_initcall(customize_machine);??? // init.h? initcall3 ?? 可以看到customize_machine()函数将会在do_initcalls()的第3个等级上被调用,接着就会调用函数init_machine(), ?? 也就是函数benzglb_init(): ?do_initcalls() ?--> customize_machine() ?? --> init_machine() == benzglb_init() ???? --> benzina_init_nand()?????? // 该函数中我们只关注nand初始化 ?????? 看来有必要将benzina_init_nand()全部列出来看一看了: ?????? static struct pxa3xx_nand_platform_data benzina_nand_info; ?????? /****** ?????? struct pxa3xx_nand_platform_data { ??????? struct mtd_partition *parts; ??????? unsigned int??? nr_parts; ?????? }; ?????? ******/ ?????? static void __init benzina_init_nand(void) ?????? { ??????? benzina_nand_info.parts = android_256m_v75_partitions;??????? // nand分区数组 ??????? benzina_nand_info.nr_parts = ARRAY_SIZE(android_256m_v75_partitions); // nand分区数目 ???????? ??????? pxa3xx_device_nand.dev.platform_data = &benzina_nand_info; ??????? platform_device_register(&pxa3xx_device_nand); ?????? } ?????? android_256m_v75_partitions定义于arch/arm/mach-pxa/include/mach/part_table.h中,这是一个 ?????? struct mtd_partition类型结构体的数组,描述了系统上nand分区情况:name、offset、size等。 ?????? pxa3xx_device_nand结构体对象是struct platform_device类型: ?????? static u64 pxa3xx_nand_dma_mask = DMA_BIT_MASK(32); ?????? static struct resource pxa3xx_resource_nand[] = { ??????? [0] = { ???????? .start = 0x43100000,???????? .end = 0x431000ff,???????? .flags = IORESOURCE_MEM,??????? },??????? [1] = { ???????? .start = IRQ_NAND,???????? .end = IRQ_NAND,???????? .flags = IORESOURCE_IRQ,?????? }; ??????? ?????? struct platform_device pxa3xx_device_nand = { ??????? .name? = "pxa3xx-nand",??????? .id? = -1,??????? .dev? = { ???????? .dma_mask = &pxa3xx_nand_dma_mask,???????? .coherent_dma_mask = DMA_BIT_MASK(32),??????? .resource = pxa3xx_resource_nand,?? // see up ??????? .num_resources = ARRAY_SIZE(pxa3xx_resource_nand),?????? }; ?????? struct platform_device结构体的定义位于文件include/linux/platform_device.h中: ?????? struct platform_device { ??????? const char * name; ??????? int? id; ??????? struct device dev; ??????? u32? num_resources; ??????? struct resource * resource; ?????? }; ?????? benzina_init_nand()函数中将描述nand分区的结构体benzina_nand_info与描述nand device的结构体 ?????? 联系起来: ?????? pxa3xx_device_nand.dev.platform_data = &benzina_nand_info; ?????? 最后调用函数platform_device_register(&pxa3xx_device_nand)将nand的平台设备注册进系统的设备树内。 ?????? 对于注册的过程这里就不跟踪了,如果有兴趣,可参考我的另篇文章或自行分析。 二、platform driver注册 ?该部分的内容位于文件drivers/mtd/nand/pxa3xx_nand.c ?static struct platform_driver pxa3xx_nand_driver = { ? .driver = { ?? .name = "pxa3xx-nand",? },? .probe? = pxa3xx_nand_probe,? .remove? = pxa3xx_nand_remove,?#ifdef CONFIG_PM??????????????? // 电源管理的部分 ? .suspend = pxa3xx_nand_suspend,? .resume? = pxa3xx_nand_resume,?#endif ?}; ?static int __init pxa3xx_nand_init(void) ?{ ? ... ? return platform_driver_register(&pxa3xx_nand_driver); ?} ?module_init(pxa3xx_nand_init);? ?这里说明一点:device和driver的注册其实是没有先后之分的,device注册的时候除了将自己挂在platform bus上外,另外 ?会去遍历该bus上的所有drivers,直到匹配到(device和driver的名字相同)一个driver为止。而driver注册的时候,也是除 ?了将自己挂在platfrom bus上之外,另外也会去遍历该bus上的所有设备区匹配,这里和前面不同的是,它会去找到多有该 ?driver可以管理到的设备为止。下面就跟踪一下driver注册时,如何调用到probe函数的,又如何传递了 ?struct platform_device的参数: ?platform_driver_register(&pxa3xx_nand_driver) ?--> drv->driver.bus = &platform_bus_type ?--> drv->driver.probe = platform_drv_probe ?--> ... ?--> driver_register(&drv->driver) ?? --> driver_find(drv->name,drv->bus)??? // 线检查是否已经注册过了 ?? --> bus_add_driver(drv) ???? --> driver_attach(drv) ??????? --> bus_for_each_dev(drv->bus,drv,__driver_attach) ????????? --> fn(dev,data) = __driver_attach(dev,data) // dev - each device on platfrom bus ????????????????????????????????? // data - driver ??????????? --> driver_probe_device(drv,dev) ????????????? --> drv->bus->match(dev,drv) = platform_match(dev,drv) // 名字匹配 ????????????? --> really_probe(dev,drv) ??????????????? --> drv->probe(dev) = platform_drv_probe(dev) ????????????????? --> static int platform_drv_probe(struct device *_dev) ?????????????????? { ??????????????????? struct platform_driver *drv = to_platform_driver(_dev->driver); ??????????????????? struct platform_device *dev = to_platform_device(_dev); ????????????? ??????????????????? return drv->probe(dev); ?????????????????? } ?????????????????? -->pxa3xx_nand_probe(&pxa3xx_device_nand); ?????????????????? ... ?????????????????? 到这个过程中,我们就还可以看到,driver注册的时候,会优先使用platform bus ?????????????????? 的probe函数,如果它的probe函数为NULL,那么就使用注册driver的probe函数 ?????????????????? (前提是要存在probe函数) 三、pxa3xx_nand_probe()函数分析 ? 由于内容加多,参见文档:pxa3xx_nand_probe.c 四、底层几个关键结构体的联系 static struct mtd_info *monahans_mtd = NULL; struct nand_chip *this;? struct pxa3xx_nand_info *info; struct dfc_context dfc_context = { ?.dfc_mode = &dfc_mode,}; static struct dfc_flash_info hynix4GbX16 = { ?.timing = { ? .tCH = 10,????? /* tCH,Enable signal hold time */ ? .tCS = 35,????? /* tCS,Enable signal setup time */ ? .tWH = 15,????? /* tWH,ND_nWE high duration */ ? .tWP = 25,????? /* tWP,ND_nWE pulse time */ ? .tRH = 15,????? /* tRH,ND_nRE high duration */ ? .tRP = 25,????? /* tRP,ND_nRE pulse width */ ? /* tR = tR+tRR+tWB+1,ND_nWE high to ND_nRE low for read */ ? .tR = 25000,? /* tWHR,ND_nWE high to ND_nRE low delay for status read */ ? .tWHR = 60,? .tAR = 10,????? /* tAR,ND_ALE low to ND_nRE low delay */ ?},?.enable_arbiter = 1,??? /* Data flash bus arbiter enable */ ?.page_per_block = 64,?? /* Pages per block */ ?.row_addr_start = 1,/* third cycle start,Row address start position */ ?.read_id_bytes = 4,???? /* Returned ID bytes */ ?.dfc_mode = 0,????????? /* NAND mode */ ?.ncsx = 0,?.page_size = 2048,????? /* Page size in bytes */ ?.oob_size = 64,???????? /* OOB size in bytes */ ?.flash_width = 16,????? /* Width of Flash memory */ ?.dfc_width = 16,??????? /* Width of flash controller */ ?.num_blocks = 4096,???? /* Number of physical blocks in Flash */?? //modified sunqidong ?.chip_id =? 0xbcad,???????????????????????? //modified sunqidong ?.read_prog_cycles = 5,/* Read,Program Cycles */ ?/* command codes */ ?.read1 = 0x3000,??????? /* Read */ ?.read2 = 0x0050,??????? /* Read1 unused,current DFC don't support */ ?.program = 0x1080,????? /* Write,two cycle command */?????? //modified sunqidong ?.read_status = 0x0070,? /* Read status */ ?.read_id = 0x0090,????? /* Read ID */ ?.erase =? 0xD060,?????? /* Erase,two cycle command */ ?.reset = 0x00FF,??????? /* Reset */ ?.lock = 0x002A,???????? /* Lock whole flash */ ?.unlock = 0x2423,/* Unlock,two cycle command,supporting partial unlock */ ?.lock_status = 0x007A,? /* Read block lock status */ ?.addr2ndcb1 = HYNIX4GbX16Addr2NDCB1,?.ndbbr2addr = HYNIX4GbX16NDBBR2Addr,}; ///////////////////////// 这几个底层关键结构体的联系 //////////////////////////// context->flash_info = &hynix4GbX16 // 分配mtd_info、nand_chip、pxa3xx_nand_info的空间 monahans_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) + ?? sizeof(struct pxa3xx_nand_info),GFP_KERNEL); ... this = (struct nand_chip *)((void *)monahans_mtd + sizeof(struct mtd_info)); info = (struct pxa3xx_nand_info *)((void *)this + sizeof(struct nand_chip)); ... monahans_mtd->priv = this; this->priv = info; ... info->context = &dfc_context ... (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |