Hello, Cocos2d-x
女儿从两岁半开始接触iPad,在这个年龄段也只有一些幼教类游戏适合她玩。虽然知道iPad玩久了对视力有伤害,但有时候还真拗不过果果,索性 也就让她玩一会儿。之前对智能终端上的东西不是很在意,也没啥兴趣,这大概与当年在大学时做Win32 GUI开发的糟糕经历多多少少有点关系。不过智能终端是大势所趋,历史的潮流不能违抗。虽然自己并非以Android/iOS编程为主业,但适当学习学习 总归没有坏处,万一作出一个像"Flappy Bird"的游戏,爆发一下,还是蛮Happy的。于是在开始学习实践之前给自己定了一个小目标:今年六一儿童节送给女儿一款自己制作的小游戏。 智能终端上的游戏目前风头正劲,试问哪个智能手机上没有几款企鹅公司出品的游戏呢!之前从未涉猎过游戏开发,但知道游戏开发前要挑选一款合适的游 戏引擎,自己从头开始敲代码的时代已经out了。在寻觅游戏引擎之前,我需要回答三道摆在我面前的选择题: 1、2D引擎还是3D引擎? 作为入门级选手,2D游戏显然更适合上手一些,另外适合果果这个年龄段的幼教类的游戏也多以2D游戏居多。3D游戏本身也太难了,不仅要 Programming能力,还要3D建模能力,这些学习起来周期就太长了;一直是UbuntuFans,手头没有Mac Book,这样开发iOS程序变成一件糟心的事,在Ubuntu下搭建iOS App开发环境繁杂的很,即便是虚拟机也懒得尝试。但从游戏体验来看,还是在iPad上玩更好一些,因此最好引擎能跨平台,以便后续迁移到iOS上;开源 和用开源惯了,收费的引擎目前不在考虑范围之内。综上,我要寻找的是一款开源的、跨平台的Mobile 2D Game Engine。 于是我找到了Cocos2d-x!Cocos2d-x是Cocos2d-iphone的C++跨平台分支,由于是国人创立的,在国内有着较大的用 户群,引擎资料也较多,社区十分活跃。国内已经出版了多本有关Cocos2d-x的中文书籍,比如《Cocos2d-x高级开发教程:制作自己的 “捕鱼达人”》 、《Cocos2d-x权威指南》 等都还不错。更重要的是Cocos2d-x自带了丰富的例子,供初学者“临摹学习”,其中cocos2d-x-2.2.2/samples/Cpp /TestCpp这个例子几乎涵盖了该引擎的绝大多数功能。下面就开启Cocos2d-x的入门之旅(For Android)。 一、引擎安装 试验环境: Cocos2d-x官网目前提供2.2.2稳定版以及3.0beta2版的下载(当然你也可以下载到更老的版本)。由于3.0改变较大,资料不 多,且对编译器等版本的要求较高(需要支持C++ 11标准),因此这里依旧以2.2.2版本作为学习目标。Cocos2d-x-2.2.2下载后解压到某个目录:比如/home1/tonybai/android-dev/cocos2d-x-2.2.2。 如果仅是用Cocos2d-x开发Android版本游戏,则不需要做什么编译工作。Android Game Project会在Project build时自动用NDK的编译器编译C++代码,并与NDK链接。如果你想早点看看Cocos2d-x sample中的例子运行起来到底是什么样子的,你可以在Ubuntu下编译出Linux版本的游戏:在cocos2d-x-2.2.2下执行make-all-linux-project.sh即可。编译需要一段时间,编译成 功后,我们可以进入到“cocos2d-x-2.2.2/samples/Cpp/HelloCpp/proj.linux/bin/release” 下执行“HelloCpp”这个可执行文件,一个最简单的Cocos2d-x游戏就会展现在你的面前了。 Android sample project的构建稍微复杂些: 首先在Eclipse中添加libcocos2dx Library project from existed code(注意:不Copy到workspace,原地建立)。该Project的代码路径为cocos2d-x-2.2.2/cocos2dx/platform /android/java。在project.properties和AndroidManifest.xml适当修改你所使用的api版本, 以让编译通过。我这里用的是 target=android-19。 然后,设置NDK_ROOT环境变量(比如export NDK_ROOT='/home1/tonybai/android-dev/adt-bundle-linux-x86_64/android-ndk-r9c'), 供build_native.sh使用。 最后添加游戏project。在Eclipse中添加HelloCpp project from existed code,位置cocos2d-x-2.2.2/samples/Cpp/HelloCpp/proj.android(注 意:不Copy到Workspace中,原地建立)。在HelloCpp的project.properties中添加“android.library.reference.1=../../../../cocos2dx/platform/android /java”。同样别忘了在project.properties和AndroidManifest.xml适当修改你所使用 的api版本,以让编译通过。 如果一切顺利的话,你会在Console窗口看到“**** Build Finished ****”。Problems窗口显示“0 errors“。 启动Android模拟器,Run Application,同样的HelloCpp画面会呈现在模拟器上。 Cocos2d-x是建构在OpenGL技术之上的。对于Android平台而言,Android SDK已经完全封装了opengl es 1.1/2.0的API(android.opengl.*;javax.microedition.khronos.egl.*;javax.microedition.khronos.opengles.*), 引擎完全可以建立在这个之上,无需C++代码。但Cocos2d-x是一个跨平台的2D游戏引擎,核心选择了用C++代码实现(iOS提供的C绑 定,不提供Java绑定;Android则提供了Java和C绑定),因此 在开发Android平台的2D游戏时,引擎部分是SDK与NDK交相互应,比如GLThread的创建和管理用的是SDK的 GLSurfaceView和GLThread,但真正的Surface绘制部分则是回调Cocos2d-x用C++编写的绘制实现(链接NDK 中的库)。 二、Cocos2d-x Android工程代码组织结构 以samples/Cpp/HelloApp的Android工程为例,Android版的Cocos2d-x工程与普通android应用程序 差别 不大,核心部分只是多了一个jni目录和一个build_native.sh脚本文件。其中jni目录下存放的是Java和C++调用转换的“胶 水”代码;build_native.sh则是用于编译jni下C++代码以及 cocos2dx_static library代码的构建脚本。 HelloCpp的构建过程摘要如下: **** Build of configuration Default for project HelloCpp **** bash /home1/tonybai/android-dev/cocos2d-x-2.2.2/samples/Cpp/HelloCpp/proj.android/build_native.sh **** Build Finished **** 指挥NDK编译的则是jni下的Android.mk文件,其角色类似于Makefile。 三、Cocos2d-x Android工程代码阅读 单独将如何阅读代码拿出来,是为了后面分析引擎的驱动流程做准备工作。学习类似Cocos2d-x这样的游戏引擎,仅仅停留在游戏逻辑层代码是不 能很好的把握引擎本质的,因此适当的挖掘引擎实现实际上对于理解和使用 引擎都是大有裨益的。 以一个Cocos2d-x Android工程为例,它的游戏逻辑代码以及涉及的引擎代码涵盖在一下路径下(还是以HelloCpp的Android工程为例): 项目层: 后续的代码分析也将从这两个层次、六处位置出发。 四、从Activity开始 之前多少了解了一些Android App开发的知识,Android App都是始于Activity的。游戏也是App的一种,因此在Android平台上,Cocos2d-x游戏也是从Activity开始的。于是 Activity,确切的说是Cocos2dxActivity是我们这次引擎驱动机制分析的出发点。 回顾Android Activity的Lifecycle,Activity启动的顺序是:Activity.onCreate -> Activity.onStart() -> Activity.onResume()。接下来我们将按照 这条主线进行引擎驱动机制的分析。 HelloCpp.java中的HelloCpp这个Activity完全无所作为,仅仅是继承其父类Cocos2dxActivity的实现罢 了。 // HelloCpp.java 我们来看Cocos2dxActivity类。 // Cocos2dxActivity.java @Override public void init() { … … // …add to FrameLayout // Set framelayout as the content view 从上面代码可以看出,onCreate调用的init方法才是Cocos2dxActivity初始化的核心。在init方法 中,Cocos2dxActivity创建了一个Framelayout实例,并将该实例作为content View赋给了Cocos2dxActivity的实例。Framelayout实例也并不孤单,一个设置了Cocos2dxRenderer实例的 GLSurfaceView被Added to it。而Cocos2d-x引擎的初始化已经悄悄地在这几行代码间完成了,至于初始化的细节我们后续再做分析。 接下来是onResume方法,它的实现如下: @Override Cocos2dxHelper.onResume(); onResume调用了View的onResume()。 // Cocos2dxGLSurfaceView: this.queueEvent(new Runnable() { Cocos2dxGLSurfaceView将该事件打包放到队列里,扔给了另外一个线程去执行(后续会详细说明这个线程),对应的方法在 Cocos2dxRenderer class中。 public void handleOnResume() { Render实际上调用的是native方法。 JNIEXPORT void JNICALL Java_org_cocos2dx_lib_Cocos2dxRenderer_nativeOnResume() { applicationWillEnterForeground方法在你的AppDelegate.cpp中; void AppDelegate::applicationWillEnterForeground() { // if you use SimpleAudioEngine,it must resume here 这里仅是重新获得了一下时间罢了。 五、Render Thread(渲染线程)- GLThread 游戏引擎要兼顾UI事件和屏幕帧刷新。Android的OpenGL应用采用了UI线程(Main Thread) + 渲染线程(Render Thread)的模式。Activity活在Main Thread(主线程)中,也叫做UI线程。该线程负责捕获与用户交互的信息和事件,并与渲染(Render)线程交互。比如当用户接听电话、切换到其他 程序时,渲染线程必须知道发生了 这些事件,并作出即时的处理,而这些事件及处理方式都是由主线程中的Activity以及其装载的View传递给渲染线程的。我们在Cocos2dx的框 架代码中看不到渲染线程的诞生过程,这是因为这一过程是在Android SDK层实现的。 我们回顾一下Cocos2dxActivity.init方法的关键代码: // Cocos2dxGLSurfaceView // …add to FrameLayout Cocos2dxGLSurfaceView是 android.opengl.GLSurfaceView的子类。在android 上做原生opengl es 2.0编程的人应该都清楚GLSurfaceView的重要性。但渲染线程并非是在Cocos2dxGLSurfaceView实例化时被创建的,而是在 setRenderer的时候。 我们来看Cocos2dxGLSurfaceView.setCocos2dxRenderer的实现: public void setCocos2dxRenderer(final Cocos2dxRenderer renderer) { setRender是Cocos2dxGLSurfaceView父类GLSurfaceView实现的方法。在Android SDK GLSurfaceView.java文件中,我们看到: public void setRenderer(Renderer renderer) { GLThread的实例是在这里被创建并开始执行的。至于渲染线程都干了些什么,我们可以通过其run方法看到: @Override try { run方法并没有给我们带来太多有价值的东西,真正有价值的信息藏在guardedRun方法中。guardedRun是这个源文件中规模最为庞 大的方法,但抽取其核心结构后,我们发现它大致就是一个死循环,以下是摘要式的伪代码: while (true) { if (event != null) { if needed if needed if needed 在这里我们看到了event、Renderer的三个回调方法onSurfaceCreated、onSurfaceChanged以及 onDrawFrame,后续我们会对这三个函数做详细分析的。 六、游戏逻辑的入口 在HelloCpp的Classes下有好多C++代码文件(涉及具体的游戏逻辑),在HelloCpp的android project jni目录下也有Jni胶水代码,那么这些代码是如何和引擎一起互动生效的呢? 上面讲到过,涉及到画面的一些渲染都是在GLThread中进行的,这涉及到onSurfaceCreated、 onSurfaceChanged以及onDrawFrame三个方法。我们看看 Cocos2dxRenderer.onSurfaceCreated方法的实现,该方法会在Surface被首次渲染时调用: public void onSurfaceCreated(final GL10 pGL10,final EGLConfig pEGLConfig) { 该方法继续调用HelloCpp工程jni目录下的nativeInit代码: void Java_org_cocos2dx_lib_Cocos2dxRenderer_nativeInit(JNIEnv* env,jobject thiz,jint w,jint h) 这似乎让我们看到了游戏逻辑的入口了: CCEGLView *view = CCEGLView::sharedOpenGLView(); 继续追踪CCApplication::run方法: int CCApplication::run() return -1; applicationDidFinishLaunching,没错这就是游戏逻辑的入口了。我们得回到Samples代码目录中去找到对应方法 的实现。 //cocos2d-x-2.2.2/samples/Cpp/HelloCpp/Classes/AppDelegate.cpp bool AppDelegate::applicationDidFinishLaunching() { pDirector->setOpenGLView(pEGLView); // turn on display FPS // set FPS. the default value is 1.0/60 if you don't call this // create a scene. it's an autorelease object // run return true; 的确,在applicationDidFinishLaunching中我们做了很多引擎参 数的设置。接下来大管家CCDirector实例登场,并运行了HelloWorld Scene的实例。但这依旧是初始化的一部分,虽然方法名让人听起来像是某种持续连贯行为: //cocos2d-x-2.2.2/cocos2dx/CCDirector.cpp void CCDirector::runWithScene(CCScene *pScene) void CCDisplayLinkDirector::startAnimation(void) m_bInvalid = false; 两个方法均只是初始化了某些数据成员变量,并未真正将引擎驱动起来。 七、驱动引擎 之所以游戏画面是运动的,那是因为屏幕以较高的帧数刷新的缘故,这样人眼就会看到连续的动作,就和电影的放映原理是一样的。在Cocos2d-x 引擎中这些驱动屏幕刷新的代码在哪里呢? 我们回顾一下之前谈到的GLThread线程,我们说过画面渲染的工作都是由它来完成的。GLThread的核心是guardedRun函数,该 函数以“死循环”的方式调用Cocos2dxRender.onDrawFrame方法对画面进行持续渲染。 我们来看看引擎实现的Cocos2dxRender.onDrawFrame方法: public void onDrawFrame(final GL10 gl) { /* // should render a frame when onDrawFrame() is called or there is a /* this.mLastTickInNanoSeconds = nowInNanoSeconds; 这个方法实现得比较奇怪,似乎修改过多次,但最后还是决定只保留了一个方法调用: Cocos2dxRenderer.nativeRender()。从注释掉的代码来看,似乎是想在这个方法中通过Thread.sleep来控制 Render Thread渲染的帧率。但由于控制的不理想,索性就不控制了,让guardedRun真正变成了dead loop。但从HelloCpp Sample运行时的状态显示,画面始终保持在60帧左右,让人十分诧异。据说Cocos2d-x 3.0版本重新设计了渲染这块的机制。(后记:在Android上虽然没有帧数控制,但真正的渲染帧率实际上还受到"垂直同步"信号 – vertical sync的影响。在游戏中,也许强劲的显卡迅速的绘制完一屏的图像,但是没有垂直同步信号的到达,显卡无法绘制下一屏,只有等vsync信号到达,才可以绘制。这样fps实际上要要受到操作系统刷新率值的制约)。 nativeRender从命名来看,这显然是一个C++编写的函数实现。我们只能到jni目录下寻找。 cocos2d-x-2.2.2/cocos2dx/platform/android/jni/ Java_org_cocos2dx_lib_Cocos2dxRenderer.cpp JNIEXPORT void JNICALL Java_org_cocos2dx_lib_Cocos2dxRenderer_nativeRender(JNIEnv* env) { nativeRender也很简洁,直接调用了CCDirector的mainLoop,也就是说每帧渲染过程中真正干活地是 CCDirector::mainLoop。到此我们终于找到了引擎渲染的驱动器:GLThead::guardedRun,以“死循环”的方式刷新着画面,让我们感受到“动”的魅力。 八、mainLoop 进一步我们来看看mainLoop所做的工作。mainLoop是CCDirector类的一个纯虚函数,CCDirector的子类CCDisplayLinkDirector真正实现了 它: //CCDirector.cpp // release the objects void CCDirector::drawScene(void) //tick before glClear: issue #533 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); /* to avoid flickr,nextScene MUST be here: after tick and before draw. kmGLPushMatrix(); // draw the scene // draw the notifications node if (m_bDisplayStats) kmGLPopMatrix(); m_uTotalFrames++; // swap buffers if (m_bDisplayStats) 帧渲染由mainLoop调用的drawScene()完成,drawScene方法根据Scene下的渲染树,根据node的最新属性逐个渲染 node,并调整各个Node的调度定时器数据,细节这里就不详细说明了。 九、UI线程与GLThread的交互 用户的屏幕触控动作由UI线程捕捉到,该类事件需要传递给引擎,并由GLThread根据各个画面元素的最新状态重新绘制画面。UI线程负责处理用户交互 事件,并将特定的事件通知GLThread处理。UI线程通过Cocos2dxGLSurfaceView的queueEvent方法,将事件以及处理方 法传递给GLThread执行的。 Cocos2dxGLSurfaceView的queueEvent方法继承自其父类GLSurfaceView: public void queueEvent(Runnable r) { 而GLThread的queueEvent方法实现如下: public void queueEvent(Runnable r) { 该方法将event互斥地放入EventQueue,并通知阻塞在Queue上的线程取货。 运行着的GLThread实例在guardedRun中会从event队列中取出runnable event并run的。 if (! mEventQueue.isEmpty()) { … … Activity的各种事件Pause、Resume、Stop以及View的各种屏幕触控事件都是通过queueEvent传递给GLThread执行的,比如:View的onKeyDown方法: //Cocos2dxGLSurfaceView.java 十、小结 有了以上的对Cocos2d-x引擎的理解后,再编写游戏代码就更加游刃有余了,至少出现问题时,我们知道应该在哪里查找了。就像对汽车的发动机了如指掌 后,一旦发生动力故障,我们基本知道排除的方法。但对发动机了解的再透彻,也不能代表就能设计和生产出好车,游戏也是这样,对引擎了解是一码事,设计和实 现出好游戏是另外一码事。学习引擎只是编写游戏的起点而已。 ? 2014,bigwhite. 版权所有. 转载只是为了方便查找,大家感觉好,尽量去看原文。 原文地址:http://tonybai.com/2014/03/11/hello-cocos2dx/ (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |